Overview
ETH Balance
0 ETH
More Info
ContractCreator
TokenTracker
Multichain Info
N/A
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Mint | 8803316 | 370 days ago | IN | 0.0005 ETH | 0.00000009 |
Loading...
Loading
Minimal Proxy Contract for 0xaa47c429db1f1bdd035fcff811437f64bff607c7
Contract Name:
OpenEdition721Mint
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 100000000 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT /** * * 888888b. 888b d888 d8b 888 * 888 "88b 8888b d8888 Y8P 888 * 888 .88P 88888b.d88888 888 * 8888888K. 8888b. .d8888b .d88b. 888Y88888P888 888 88888b. 888888 * 888 "Y88b "88b 88K d8P Y8b 888 Y888P 888 888 888 "88b 888 * 888 888 .d888888 "Y8888b. 88888888 888 Y8P 888 888 888 888 888 * 888 d88P 888 888 X88 Y8b. 888 " 888 888 888 888 Y88b. * 8888888P" "Y888888 88888P' "Y8888 888 888 888 888 888 "Y888 * BaseMint v0.0.2 */ pragma solidity ^0.8.21; import {ERC721} from "solmate/tokens/ERC721.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "../interfaces/ISharedConstructs.sol"; import "../interfaces/IErrors.sol"; import "../interfaces/IMintFactory.sol"; import "../../utils/mintUtil.sol"; /// @title Open Edition 721 NFT Collection /// @dev NFT Collection which supports an Open Edition style with shared metadata between all tokens. /// @author polak.eth contract OpenEdition721Mint is IMint, ERC721("", ""), Initializable, OwnableUpgradeable { /// @dev Current Token Id matches the token id type of Solmate uint256 public currentTokenId; /// @dev Metadata for the minting contract CollectionCreationRequest public metadata; /// @dev Mint Factory reference for fees address public mintingContract; /// @dev MintConfigChanged is required for Reservoir Minting ingestion /// @notice See Reference: https://github.com/reservoirprotocol/indexer/tree/main/packages/mint-interface event MintConfigChanged(); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); // disabled initializers so they cannot be called again. } /// @dev Initializer which creates a new NFT collection based on the request. /// @notice This is Initializable because we are using clones to create. function initialize(CollectionCreationRequest memory request, address mintingContract_) public initializer { if (mintingContract_ == address(0)) { revert IErrors.InvalidContractAddress(); } // Make sure the creator gets ownership of the contract __Ownable_init(request.creator); // Set super params name = request.name; symbol = request.symbol; // Contract Params metadata = request; mintingContract = mintingContract_; currentTokenId = 1; // Set current to 1 so the first NFT is #1 and not #0 emit MintConfigChanged(); } /** * ------------ External ------------ */ // @dev standard mint function function mint(address to, uint256 quantity) external payable { // Check we don't exceed max supply if (currentTokenId + quantity > metadata.maxSupply) { revert IErrors.OutOfSupply(); } // Check the mint has started or ended. if (metadata.startTime > 0 && metadata.startTime > block.timestamp) { revert IErrors.MintingClosed(); } if (metadata.endTime > 0 && metadata.endTime < block.timestamp) { revert IErrors.MintingClosed(); } // Check if we are over wallet limits if (balanceOf(to) + quantity > metadata.maxPerWallet) { revert IErrors.OverClaimLimit(); } // Check the correct amount of ETH sent. uint256 creatorFee; MintingFee memory royaltyFee; (creatorFee, royaltyFee) = getFees(quantity); uint256 platformFee = royaltyFee.fee * quantity; // Verify the exact amount, don't want to deal with refunding ETH. if (msg.value != creatorFee + platformFee) { revert IErrors.IncorrectETHAmount(msg.value, creatorFee + platformFee); } // Increment OE for (uint64 i = 0; i < quantity; i++) { _mint(to, currentTokenId++); } // Pay Creator (bool payCreatorResult,) = owner().call{value: creatorFee}(""); if (!payCreatorResult) { revert IErrors.FailedToSendEth(); } // Pay Platform Fee address royaltyFeeAddress = royaltyFee.addr; (bool payRoyaltyResult,) = royaltyFeeAddress.call{value: platformFee}(""); if (!payRoyaltyResult) { revert IErrors.FailedToSendEth(); } } /// @dev Allows an owner to update the metadata of the collection. /// @notice This will allow and owner to change claim conditions owners should burn collections that should not change. function setMetadata(CollectionCreationRequest memory metadata_) external onlyOwner { metadata = metadata_; emit MintConfigChanged(); } function contractURI() external view returns (string memory) { return MintUtil.contractURI(metadata, true); } /// @dev get the total minted quantity. /// @notice have to offset because we are starting at #1 vs #0 function totalSupply() external view returns (uint256) { if (currentTokenId == 1) { return 0; } return currentTokenId - 1; } /** * ------------ Public ------------ */ function tokenURI(uint256 tokenId) public view override(ERC721) returns (string memory) { if (tokenId > currentTokenId || tokenId == 0) { revert IErrors.TokenDoesNotExist({tokenId: tokenId}); } return MintUtil.getOpenEditionUri(metadata, tokenId, true); } function getMetadata() public view returns (CollectionCreationRequest memory) { return metadata; } /// @dev Gets the total cost to mint this collection. /// @notice We call the mint factory to determine platform costs. function cost(uint256 quantity) public view returns (uint256) { uint256 creatorFee; MintingFee memory royaltyFee; (creatorFee, royaltyFee) = getFees(quantity); return creatorFee + royaltyFee.fee; } /** * ------------ Internal ------------ */ /// @dev Gets the fees for this collection. /// @notice We call the mint factory to determine platform costs. function getFees(uint256 quantity) public view returns (uint256, MintingFee memory) { IMintFactory mintFactory = IMintFactory(mintingContract); MintingFee memory royalty = mintFactory.getMintingFee(address(this)); uint256 creatorFee = (metadata.cost * quantity); return (creatorFee, royalty); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Ownable struct OwnableStorage { address _owner; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300; function _getOwnableStorage() private pure returns (OwnableStorage storage $) { assembly { $.slot := OwnableStorageLocation } } /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ function __Ownable_init(address initialOwner) internal onlyInitializing { __Ownable_init_unchained(initialOwner); } function __Ownable_init_unchained(address initialOwner) internal onlyInitializing { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { OwnableStorage storage $ = _getOwnableStorage(); return $._owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { OwnableStorage storage $ = _getOwnableStorage(); address oldOwner = $._owner; $._owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.21; /// @dev Minting Fee for a given contract struct MintingFee { bool hasOverride; address addr; uint256 fee; } /// @dev Collection request struct which defines a common set of fields needed to create a new NFT collection. struct CollectionCreationRequest { address creator; // Collection Information string name; string description; string symbol; string image; string animation_url; string mintType; //TODO: support collection attributes? // Claim Conditions uint128 maxSupply; uint128 maxPerWallet; uint256 cost; // Start + End Dates uint256 startTime; uint256 endTime; uint256 nonce; // Nonce added to support duplicate generations }
pragma solidity ^0.8.21; /// @dev library of common errors across our Mint + Factory contracts library IErrors { // Factory Errors error InvalidSignature(); error InvalidMintType(); error InvalidZeroAddress(); error InvalidContractAddress(); error CreationFailed(); error ContractExists(); // Minting Errors error IncorrectETHAmount(uint256 sent, uint256 expected); error TokenDoesNotExist(uint256 tokenId); error OutOfSupply(); error FailedToSendEth(); error NotOwner(); error MintingClosed(); error OverClaimLimit(); }
pragma solidity ^0.8.21; import "./ISharedConstructs.sol"; /// @dev Shared interface for the Mint factory. interface IMintFactory { function getMintingFee(address addr) external view returns (MintingFee memory); } /// @dev Shared interface for all Mints. interface IMint { function mint(address to, uint256 quantity) external payable; function initialize(CollectionCreationRequest memory request, address _mintingContract) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; import "@openzeppelin/contracts/utils/Strings.sol"; import "@openzeppelin/contracts/utils/Base64.sol"; import "../basemint/interfaces/ISharedConstructs.sol"; import "./json.sol"; import {Solarray} from "solarray/Solarray.sol"; /// @title Generic Mint utility for common uses across many different mint types. /// @author polak.eth library MintUtil { function contractURI(CollectionCreationRequest memory metadata, bool encode) internal pure returns (string memory) { string memory jsonMetadata = Json.objectOf( Solarray.strings( Json.property("name", metadata.name), Json.property("description", metadata.description), Json.property("symbol", metadata.symbol), Json.property("image", metadata.image), Json.property("animation", metadata.animation_url), Json.rawProperty("mintConfig", _mintConfig(metadata)) ) ); if (encode) { return encodeJsonToBase64(jsonMetadata); } else { return jsonMetadata; } } /// @dev MintConfig as defined by Reservoirs standard /// @notice See Reference: https://github.com/reservoirprotocol/indexer/tree/main/packages/mint-interface function _mintConfig(CollectionCreationRequest memory metadata) internal pure returns (string memory) { // Construct the mintConfig JSON return Json.objectOf( Solarray.strings( Json.intProperty("maxSupply", Strings.toString(metadata.maxSupply)), Json.rawProperty("phases", Json.array(_encodePhases(metadata))) ) ); } /// @dev Formats for an OpenEdition which is an auto-incrementing name (e.g. NFT #1, NFT #2 ...). function getOpenEditionUri(CollectionCreationRequest memory metadata, uint256 tokenId, bool encode) internal pure returns (string memory) { // Generates a name with edition .. e.g. NFT => NFT #1029 string memory nameWithTokenId = string(abi.encodePacked(metadata.name, " #", Strings.toString(tokenId))); string memory jsonMetadata = Json.objectOf( Solarray.strings( Json.property("name", nameWithTokenId), Json.property("description", metadata.description), Json.property("symbol", metadata.symbol), Json.property("image", metadata.image), Json.property("animation", metadata.animation_url) ) ); if (encode) { return encodeJsonToBase64(jsonMetadata); } else { return jsonMetadata; } } /// @dev Phases are required for the Reservoir minting integration. Reservoir will read this configuration /// from the ContractURI() function. function _encodePhases(CollectionCreationRequest memory metadata) internal pure returns (string memory) { string memory maxPerWalletStr = Strings.toString(metadata.maxPerWallet); string memory costStr = Strings.toString(metadata.cost); string memory method = "0x40c10f19"; // TODO : better way than hardcoding the ABI? string memory params = '[{"name": "recipient","abiType": "address","kind": "RECIPIENT"},{"name": "quantity", "abiType": "uint256", "kind": "QUANTITY"}]'; // Define the method that needs to be called string memory txnData = Json.objectOf( Solarray.strings(Json.property("method", method), Json.rawProperty("params", params)) ); // Mint phases (we only support one phase right now) string memory phases = Json.objectOf( Solarray.strings( Json.intProperty("maxMintsPerWallet", maxPerWalletStr), Json.intProperty("startTime", Strings.toString(metadata.startTime)), Json.intProperty("endTime", Strings.toString(metadata.endTime)), Json.intProperty("price", costStr), Json.rawProperty("tx", txnData) ) ); return phases; } function encodeJsonToBase64(string memory str) internal pure returns (string memory) { return string.concat("data:application/json;base64,", Base64.encode(abi.encodePacked(str))); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to operate with Base64 strings. */ library Base64 { /** * @dev Base64 Encoding/Decoding Table */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // Loads the table into memory string memory table = _TABLE; // Encoding takes 3 bytes chunks of binary data from `bytes` data parameter // and split into 4 numbers of 6 bits. // The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up // - `data.length + 2` -> Round up // - `/ 3` -> Number of 3-bytes chunks // - `4 *` -> 4 characters for each chunk string memory result = new string(4 * ((data.length + 2) / 3)); /// @solidity memory-safe-assembly assembly { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 0x20) let dataPtr := data let endPtr := add(data, mload(data)) // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and // set it to zero to make sure no dirty bytes are read in that section. let afterPtr := add(endPtr, 0x20) let afterCache := mload(afterPtr) mstore(afterPtr, 0x00) // Run over the input, 3 bytes at a time for { } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 byte (24 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F to bitmask the least significant 6 bits. // Use this as an index into the lookup table, mload an entire word // so the desired character is in the least significant byte, and // mstore8 this least significant byte into the result and continue. mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // Reset the value that was cached mstore(afterPtr, afterCache) // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } return result; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; import {LibString} from "solmate/utils/LibString.sol"; /** * Credit goes to emo.eth / OpenSea, extracted portions of their JSON library for building the OpenEdition * JSON metadata. * ref: https://github.com/ProjectOpenSea/shipyard-core/blob/main/src/onchain/json.sol */ /** * @title JSON * @author emo.eth * @notice TODO: overrides for common types that automatically stringify */ library Json { string private constant NULL = ""; using LibString for string; /** * @notice enclose a string in {braces} * Note: does not escape quotes in value * @param value string to enclose in braces * @return string of {value} */ function object(string memory value) internal pure returns (string memory) { return string.concat("{", value, "}"); } /** * @notice enclose a string in [brackets] * Note: does not escape quotes in value * @param value string to enclose in brackets * @return string of [value] */ function array(string memory value) internal pure returns (string memory) { return string.concat("[", value, "]"); } /** * @notice enclose name and value with quotes, and place a colon "between":"them". * Note: escapes quotes in name and value * @param name name of property * @param value value of property * @return string of "name":"value" */ function property(string memory name, string memory value) internal pure returns (string memory) { return string.concat('"', escapeJSON(name, false), '":"', escapeJSON(value, false), '"'); } function intProperty(string memory name, string memory value) internal pure returns (string memory) { return string.concat('"', escapeJSON(name, false), '":', escapeJSON(value, false), ""); } /** * @notice enclose name with quotes, but not rawValue, and place a colon "between":them * Note: escapes quotes in name, but not value (which may itself be a JSON object, array, etc) * @param name name of property * @param rawValue raw value of property, which will not be enclosed in quotes * @return string of "name":value */ function rawProperty(string memory name, string memory rawValue) internal pure returns (string memory) { return string.concat('"', escapeJSON(name, false), '":', rawValue); } /** * @notice comma-join an array of properties and {"enclose":"them","in":"braces"} * Note: does not escape quotes in properties, as it assumes they are already escaped * @param properties array of '"name":"value"' properties to join * @return string of {"name":"value","name":"value",...} */ function objectOf(string[] memory properties) internal pure returns (string memory) { return object(_commaJoin(properties)); } /** * @notice comma-join an array of strings * @param values array of strings to join * @return string of value,value,... */ function _commaJoin(string[] memory values) internal pure returns (string memory) { return _join(values, ","); } /** * @notice join an array of strings with a specified separator * @param values array of strings to join * @param separator separator to join with * @return string of value<separator>value<separator>... */ function _join(string[] memory values, string memory separator) internal pure returns (string memory) { if (values.length == 0) { return NULL; } string memory result = values[0]; for (uint256 i = 1; i < values.length; ++i) { result = string.concat(result, separator, values[i]); } return result; } /** * @dev Extracted from solady/utils/LibString.sol */ function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; library Solarray { function uint8s(uint8 a) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](1); arr[0] = a; return arr; } function uint8s(uint8 a,uint8 b) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](2); arr[0] = a; arr[1] = b; return arr; } function uint8s(uint8 a,uint8 b,uint8 c) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint8s(uint8 a,uint8 b,uint8 c,uint8 d) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint8s(uint8 a,uint8 b,uint8 c,uint8 d,uint8 e) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint8s(uint8 a,uint8 b,uint8 c,uint8 d,uint8 e,uint8 f) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint8s(uint8 a,uint8 b,uint8 c,uint8 d,uint8 e,uint8 f,uint8 g) internal pure returns (uint8[] memory) { uint8[] memory arr = new uint8[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function uint16s(uint16 a) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](1); arr[0] = a; return arr; } function uint16s(uint16 a,uint16 b) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](2); arr[0] = a; arr[1] = b; return arr; } function uint16s(uint16 a,uint16 b,uint16 c) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint16s(uint16 a,uint16 b,uint16 c,uint16 d) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint16s(uint16 a,uint16 b,uint16 c,uint16 d,uint16 e) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint16s(uint16 a,uint16 b,uint16 c,uint16 d,uint16 e,uint16 f) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint16s(uint16 a,uint16 b,uint16 c,uint16 d,uint16 e,uint16 f,uint16 g) internal pure returns (uint16[] memory) { uint16[] memory arr = new uint16[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function uint32s(uint32 a) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](1); arr[0] = a; return arr; } function uint32s(uint32 a,uint32 b) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](2); arr[0] = a; arr[1] = b; return arr; } function uint32s(uint32 a,uint32 b,uint32 c) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint32s(uint32 a,uint32 b,uint32 c,uint32 d) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint32s(uint32 a,uint32 b,uint32 c,uint32 d,uint32 e) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint32s(uint32 a,uint32 b,uint32 c,uint32 d,uint32 e,uint32 f) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint32s(uint32 a,uint32 b,uint32 c,uint32 d,uint32 e,uint32 f,uint32 g) internal pure returns (uint32[] memory) { uint32[] memory arr = new uint32[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function uint40s(uint40 a) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](1); arr[0] = a; return arr; } function uint40s(uint40 a,uint40 b) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](2); arr[0] = a; arr[1] = b; return arr; } function uint40s(uint40 a,uint40 b,uint40 c) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint40s(uint40 a,uint40 b,uint40 c,uint40 d) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint40s(uint40 a,uint40 b,uint40 c,uint40 d,uint40 e) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint40s(uint40 a,uint40 b,uint40 c,uint40 d,uint40 e,uint40 f) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint40s(uint40 a,uint40 b,uint40 c,uint40 d,uint40 e,uint40 f,uint40 g) internal pure returns (uint40[] memory) { uint40[] memory arr = new uint40[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function uint64s(uint64 a) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](1); arr[0] = a; return arr; } function uint64s(uint64 a,uint64 b) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](2); arr[0] = a; arr[1] = b; return arr; } function uint64s(uint64 a,uint64 b,uint64 c) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint64s(uint64 a,uint64 b,uint64 c,uint64 d) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint64s(uint64 a,uint64 b,uint64 c,uint64 d,uint64 e) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint64s(uint64 a,uint64 b,uint64 c,uint64 d,uint64 e,uint64 f) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint64s(uint64 a,uint64 b,uint64 c,uint64 d,uint64 e,uint64 f,uint64 g) internal pure returns (uint64[] memory) { uint64[] memory arr = new uint64[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function uint128s(uint128 a) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](1); arr[0] = a; return arr; } function uint128s(uint128 a,uint128 b) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](2); arr[0] = a; arr[1] = b; return arr; } function uint128s(uint128 a,uint128 b,uint128 c) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint128s(uint128 a,uint128 b,uint128 c,uint128 d) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint128s(uint128 a,uint128 b,uint128 c,uint128 d,uint128 e) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint128s(uint128 a,uint128 b,uint128 c,uint128 d,uint128 e,uint128 f) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint128s(uint128 a,uint128 b,uint128 c,uint128 d,uint128 e,uint128 f,uint128 g) internal pure returns (uint128[] memory) { uint128[] memory arr = new uint128[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function uint256s(uint256 a) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](1); arr[0] = a; return arr; } function uint256s(uint256 a,uint256 b) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](2); arr[0] = a; arr[1] = b; return arr; } function uint256s(uint256 a,uint256 b,uint256 c) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function uint256s(uint256 a,uint256 b,uint256 c,uint256 d) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function uint256s(uint256 a,uint256 b,uint256 c,uint256 d,uint256 e) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function uint256s(uint256 a,uint256 b,uint256 c,uint256 d,uint256 e,uint256 f) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function uint256s(uint256 a,uint256 b,uint256 c,uint256 d,uint256 e,uint256 f,uint256 g) internal pure returns (uint256[] memory) { uint256[] memory arr = new uint256[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function int8s(int8 a) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](1); arr[0] = a; return arr; } function int8s(int8 a,int8 b) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](2); arr[0] = a; arr[1] = b; return arr; } function int8s(int8 a,int8 b,int8 c) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function int8s(int8 a,int8 b,int8 c,int8 d) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function int8s(int8 a,int8 b,int8 c,int8 d,int8 e) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function int8s(int8 a,int8 b,int8 c,int8 d,int8 e,int8 f) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function int8s(int8 a,int8 b,int8 c,int8 d,int8 e,int8 f,int8 g) internal pure returns (int8[] memory) { int8[] memory arr = new int8[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function int16s(int16 a) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](1); arr[0] = a; return arr; } function int16s(int16 a,int16 b) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](2); arr[0] = a; arr[1] = b; return arr; } function int16s(int16 a,int16 b,int16 c) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function int16s(int16 a,int16 b,int16 c,int16 d) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function int16s(int16 a,int16 b,int16 c,int16 d,int16 e) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function int16s(int16 a,int16 b,int16 c,int16 d,int16 e,int16 f) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function int16s(int16 a,int16 b,int16 c,int16 d,int16 e,int16 f,int16 g) internal pure returns (int16[] memory) { int16[] memory arr = new int16[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function int32s(int32 a) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](1); arr[0] = a; return arr; } function int32s(int32 a,int32 b) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](2); arr[0] = a; arr[1] = b; return arr; } function int32s(int32 a,int32 b,int32 c) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function int32s(int32 a,int32 b,int32 c,int32 d) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function int32s(int32 a,int32 b,int32 c,int32 d,int32 e) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function int32s(int32 a,int32 b,int32 c,int32 d,int32 e,int32 f) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function int32s(int32 a,int32 b,int32 c,int32 d,int32 e,int32 f,int32 g) internal pure returns (int32[] memory) { int32[] memory arr = new int32[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function int64s(int64 a) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](1); arr[0] = a; return arr; } function int64s(int64 a,int64 b) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](2); arr[0] = a; arr[1] = b; return arr; } function int64s(int64 a,int64 b,int64 c) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function int64s(int64 a,int64 b,int64 c,int64 d) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function int64s(int64 a,int64 b,int64 c,int64 d,int64 e) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function int64s(int64 a,int64 b,int64 c,int64 d,int64 e,int64 f) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function int64s(int64 a,int64 b,int64 c,int64 d,int64 e,int64 f,int64 g) internal pure returns (int64[] memory) { int64[] memory arr = new int64[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function int128s(int128 a) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](1); arr[0] = a; return arr; } function int128s(int128 a,int128 b) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](2); arr[0] = a; arr[1] = b; return arr; } function int128s(int128 a,int128 b,int128 c) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function int128s(int128 a,int128 b,int128 c,int128 d) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function int128s(int128 a,int128 b,int128 c,int128 d,int128 e) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function int128s(int128 a,int128 b,int128 c,int128 d,int128 e,int128 f) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function int128s(int128 a,int128 b,int128 c,int128 d,int128 e,int128 f,int128 g) internal pure returns (int128[] memory) { int128[] memory arr = new int128[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function int256s(int256 a) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](1); arr[0] = a; return arr; } function int256s(int256 a,int256 b) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](2); arr[0] = a; arr[1] = b; return arr; } function int256s(int256 a,int256 b,int256 c) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function int256s(int256 a,int256 b,int256 c,int256 d) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function int256s(int256 a,int256 b,int256 c,int256 d,int256 e) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function int256s(int256 a,int256 b,int256 c,int256 d,int256 e,int256 f) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function int256s(int256 a,int256 b,int256 c,int256 d,int256 e,int256 f,int256 g) internal pure returns (int256[] memory) { int256[] memory arr = new int256[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bytes1s(bytes1 a) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](1); arr[0] = a; return arr; } function bytes1s(bytes1 a,bytes1 b) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](2); arr[0] = a; arr[1] = b; return arr; } function bytes1s(bytes1 a,bytes1 b,bytes1 c) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bytes1s(bytes1 a,bytes1 b,bytes1 c,bytes1 d) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bytes1s(bytes1 a,bytes1 b,bytes1 c,bytes1 d,bytes1 e) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bytes1s(bytes1 a,bytes1 b,bytes1 c,bytes1 d,bytes1 e,bytes1 f) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bytes1s(bytes1 a,bytes1 b,bytes1 c,bytes1 d,bytes1 e,bytes1 f,bytes1 g) internal pure returns (bytes1[] memory) { bytes1[] memory arr = new bytes1[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bytes8s(bytes8 a) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](1); arr[0] = a; return arr; } function bytes8s(bytes8 a,bytes8 b) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](2); arr[0] = a; arr[1] = b; return arr; } function bytes8s(bytes8 a,bytes8 b,bytes8 c) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bytes8s(bytes8 a,bytes8 b,bytes8 c,bytes8 d) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bytes8s(bytes8 a,bytes8 b,bytes8 c,bytes8 d,bytes8 e) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bytes8s(bytes8 a,bytes8 b,bytes8 c,bytes8 d,bytes8 e,bytes8 f) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bytes8s(bytes8 a,bytes8 b,bytes8 c,bytes8 d,bytes8 e,bytes8 f,bytes8 g) internal pure returns (bytes8[] memory) { bytes8[] memory arr = new bytes8[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bytes16s(bytes16 a) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](1); arr[0] = a; return arr; } function bytes16s(bytes16 a,bytes16 b) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](2); arr[0] = a; arr[1] = b; return arr; } function bytes16s(bytes16 a,bytes16 b,bytes16 c) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bytes16s(bytes16 a,bytes16 b,bytes16 c,bytes16 d) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bytes16s(bytes16 a,bytes16 b,bytes16 c,bytes16 d,bytes16 e) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bytes16s(bytes16 a,bytes16 b,bytes16 c,bytes16 d,bytes16 e,bytes16 f) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bytes16s(bytes16 a,bytes16 b,bytes16 c,bytes16 d,bytes16 e,bytes16 f,bytes16 g) internal pure returns (bytes16[] memory) { bytes16[] memory arr = new bytes16[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bytes20s(bytes20 a) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](1); arr[0] = a; return arr; } function bytes20s(bytes20 a,bytes20 b) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](2); arr[0] = a; arr[1] = b; return arr; } function bytes20s(bytes20 a,bytes20 b,bytes20 c) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bytes20s(bytes20 a,bytes20 b,bytes20 c,bytes20 d) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bytes20s(bytes20 a,bytes20 b,bytes20 c,bytes20 d,bytes20 e) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bytes20s(bytes20 a,bytes20 b,bytes20 c,bytes20 d,bytes20 e,bytes20 f) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bytes20s(bytes20 a,bytes20 b,bytes20 c,bytes20 d,bytes20 e,bytes20 f,bytes20 g) internal pure returns (bytes20[] memory) { bytes20[] memory arr = new bytes20[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bytes32s(bytes32 a) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](1); arr[0] = a; return arr; } function bytes32s(bytes32 a,bytes32 b) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](2); arr[0] = a; arr[1] = b; return arr; } function bytes32s(bytes32 a,bytes32 b,bytes32 c) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bytes32s(bytes32 a,bytes32 b,bytes32 c,bytes32 d) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bytes32s(bytes32 a,bytes32 b,bytes32 c,bytes32 d,bytes32 e) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bytes32s(bytes32 a,bytes32 b,bytes32 c,bytes32 d,bytes32 e,bytes32 f) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bytes32s(bytes32 a,bytes32 b,bytes32 c,bytes32 d,bytes32 e,bytes32 f,bytes32 g) internal pure returns (bytes32[] memory) { bytes32[] memory arr = new bytes32[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bytess(bytes memory a) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](1); arr[0] = a; return arr; } function bytess(bytes memory a,bytes memory b) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](2); arr[0] = a; arr[1] = b; return arr; } function bytess(bytes memory a,bytes memory b,bytes memory c) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bytess(bytes memory a,bytes memory b,bytes memory c,bytes memory d) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bytess(bytes memory a,bytes memory b,bytes memory c,bytes memory d,bytes memory e) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bytess(bytes memory a,bytes memory b,bytes memory c,bytes memory d,bytes memory e,bytes memory f) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bytess(bytes memory a,bytes memory b,bytes memory c,bytes memory d,bytes memory e,bytes memory f,bytes memory g) internal pure returns (bytes[] memory) { bytes[] memory arr = new bytes[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function addresses(address a) internal pure returns (address[] memory) { address[] memory arr = new address[](1); arr[0] = a; return arr; } function addresses(address a,address b) internal pure returns (address[] memory) { address[] memory arr = new address[](2); arr[0] = a; arr[1] = b; return arr; } function addresses(address a,address b,address c) internal pure returns (address[] memory) { address[] memory arr = new address[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function addresses(address a,address b,address c,address d) internal pure returns (address[] memory) { address[] memory arr = new address[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function addresses(address a,address b,address c,address d,address e) internal pure returns (address[] memory) { address[] memory arr = new address[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function addresses(address a,address b,address c,address d,address e,address f) internal pure returns (address[] memory) { address[] memory arr = new address[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function addresses(address a,address b,address c,address d,address e,address f,address g) internal pure returns (address[] memory) { address[] memory arr = new address[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function bools(bool a) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](1); arr[0] = a; return arr; } function bools(bool a,bool b) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](2); arr[0] = a; arr[1] = b; return arr; } function bools(bool a,bool b,bool c) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function bools(bool a,bool b,bool c,bool d) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function bools(bool a,bool b,bool c,bool d,bool e) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function bools(bool a,bool b,bool c,bool d,bool e,bool f) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function bools(bool a,bool b,bool c,bool d,bool e,bool f,bool g) internal pure returns (bool[] memory) { bool[] memory arr = new bool[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } function strings(string memory a) internal pure returns (string[] memory) { string[] memory arr = new string[](1); arr[0] = a; return arr; } function strings(string memory a,string memory b) internal pure returns (string[] memory) { string[] memory arr = new string[](2); arr[0] = a; arr[1] = b; return arr; } function strings(string memory a,string memory b,string memory c) internal pure returns (string[] memory) { string[] memory arr = new string[](3); arr[0] = a; arr[1] = b; arr[2] = c; return arr; } function strings(string memory a,string memory b,string memory c,string memory d) internal pure returns (string[] memory) { string[] memory arr = new string[](4); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; return arr; } function strings(string memory a,string memory b,string memory c,string memory d,string memory e) internal pure returns (string[] memory) { string[] memory arr = new string[](5); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; return arr; } function strings(string memory a,string memory b,string memory c,string memory d,string memory e,string memory f) internal pure returns (string[] memory) { string[] memory arr = new string[](6); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; return arr; } function strings(string memory a,string memory b,string memory c,string memory d,string memory e,string memory f,string memory g) internal pure returns (string[] memory) { string[] memory arr = new string[](7); arr[0] = a; arr[1] = b; arr[2] = c; arr[3] = d; arr[4] = e; arr[5] = f; arr[6] = g; return arr; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Efficient library for creating string representations of integers. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// @author Modified from Solady (https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol) library LibString { function toString(int256 value) internal pure returns (string memory str) { if (value >= 0) return toString(uint256(value)); unchecked { str = toString(uint256(-value)); /// @solidity memory-safe-assembly assembly { // Note: This is only safe because we over-allocate memory // and write the string from right to left in toString(uint256), // and thus can be sure that sub(str, 1) is an unused memory location. let length := mload(str) // Load the string length. // Put the - character at the start of the string contents. mstore(str, 45) // 45 is the ASCII code for the - character. str := sub(str, 1) // Move back the string pointer by a byte. mstore(str, add(length, 1)) // Update the string length. } } } function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but we allocate 160 bytes // to keep the free memory pointer word aligned. We'll need 1 word for the length, 1 word for the // trailing zeros padding, and 3 other words for a max of 78 digits. In total: 5 * 32 = 160 bytes. let newFreeMemoryPointer := add(mload(0x40), 160) // Update the free memory pointer to avoid overriding our string. mstore(0x40, newFreeMemoryPointer) // Assign str to the end of the zone of newly allocated memory. str := sub(newFreeMemoryPointer, 32) // Clean the last word of memory it may not be overwritten. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { // Move the pointer 1 byte to the left. str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing temp until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } // Compute and cache the final total length of the string. let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 32) // Store the string's length at the start of memory allocated for our string. mstore(str, length) } } }
{ "remappings": [ "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/solmate/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/", "solarray/=lib/solarray/src/", "solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 100000000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "shanghai", "viaIR": true, "libraries": {} }
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedToSendEth","type":"error"},{"inputs":[{"internalType":"uint256","name":"sent","type":"uint256"},{"internalType":"uint256","name":"expected","type":"uint256"}],"name":"IncorrectETHAmount","type":"error"},{"inputs":[],"name":"InvalidContractAddress","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MintingClosed","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OutOfSupply","type":"error"},{"inputs":[],"name":"OverClaimLimit","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"TokenDoesNotExist","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[],"name":"MintConfigChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"cost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"getFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"components":[{"internalType":"bool","name":"hasOverride","type":"bool"},{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint256","name":"fee","type":"uint256"}],"internalType":"struct MintingFee","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMetadata","outputs":[{"components":[{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"image","type":"string"},{"internalType":"string","name":"animation_url","type":"string"},{"internalType":"string","name":"mintType","type":"string"},{"internalType":"uint128","name":"maxSupply","type":"uint128"},{"internalType":"uint128","name":"maxPerWallet","type":"uint128"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"}],"internalType":"struct CollectionCreationRequest","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"image","type":"string"},{"internalType":"string","name":"animation_url","type":"string"},{"internalType":"string","name":"mintType","type":"string"},{"internalType":"uint128","name":"maxSupply","type":"uint128"},{"internalType":"uint128","name":"maxPerWallet","type":"uint128"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"}],"internalType":"struct CollectionCreationRequest","name":"request","type":"tuple"},{"internalType":"address","name":"mintingContract_","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadata","outputs":[{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"image","type":"string"},{"internalType":"string","name":"animation_url","type":"string"},{"internalType":"string","name":"mintType","type":"string"},{"internalType":"uint128","name":"maxSupply","type":"uint128"},{"internalType":"uint128","name":"maxPerWallet","type":"uint128"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintingContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"owner","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"description","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"image","type":"string"},{"internalType":"string","name":"animation_url","type":"string"},{"internalType":"string","name":"mintType","type":"string"},{"internalType":"uint128","name":"maxSupply","type":"uint128"},{"internalType":"uint128","name":"maxPerWallet","type":"uint128"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"}],"internalType":"struct CollectionCreationRequest","name":"metadata_","type":"tuple"}],"name":"setMetadata","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.