Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 25 from a total of 23,769,588 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0 | ||||
Join Balancer An... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000048 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000058 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.0000006 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000072 | ||||
Join Balancer An... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000061 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000056 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000058 | ||||
Join Balancer An... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000063 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000056 | ||||
Join Balancer An... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000063 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000056 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000058 | ||||
Join Balancer An... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000061 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000058 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000058 | ||||
Exit Plaza And B... | 24808517 | 4 secs ago | IN | 0 ETH | 0.00000074 | ||||
Join Balancer An... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000052 | ||||
Exit Plaza And B... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000072 | ||||
Join Balancer An... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000051 | ||||
Join Balancer An... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000051 | ||||
Join Balancer An... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000051 | ||||
Join Balancer An... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000051 | ||||
Join Balancer An... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000051 | ||||
Exit Plaza And B... | 24808516 | 6 secs ago | IN | 0 ETH | 0.00000046 |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
BalancerRouter
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Unlicensed pragma solidity ^0.8.26; import {Pool} from "./Pool.sol"; import {PreDeposit} from "./PreDeposit.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IVault} from "@balancer/contracts/interfaces/contracts/vault/IVault.sol"; import {IAsset} from "@balancer/contracts/interfaces/contracts/vault/IAsset.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {WeightedPoolUserData} from "@balancer/contracts/interfaces/contracts/pool-weighted/WeightedPoolUserData.sol"; contract BalancerRouter is ReentrancyGuard { using SafeERC20 for IERC20; IVault public immutable balancerVault; event TokensRedeemed(address indexed plazaPool, address caller, address indexed onBehalfOf, Pool.TokenType tokenType, uint256 depositedAmount, uint256 redeemedAmount); constructor(address _balancerVault) { balancerVault = IVault(_balancerVault); } function joinBalancerAndPlaza( bytes32 balancerPoolId, address _plazaPool, IAsset[] memory assets, uint256[] memory maxAmountsIn, bytes memory userData, Pool.TokenType plazaTokenType, uint256 minPlazaTokens, uint256 deadline ) external nonReentrant returns (uint256) { // Step 1: Join Balancer Pool uint256 balancerPoolTokenReceived = joinBalancerPool(balancerPoolId, assets, maxAmountsIn, userData); // Step 2: Approve balancerPoolToken for Plaza Pool (address balancerPoolToken,) = balancerVault.getPool(balancerPoolId); IERC20(balancerPoolToken).safeIncreaseAllowance(_plazaPool, balancerPoolTokenReceived); // Step 3: Join Plaza Pool uint256 plazaTokens = Pool(_plazaPool).create(plazaTokenType, balancerPoolTokenReceived, minPlazaTokens, deadline, msg.sender); return plazaTokens; } function joinBalancerPool( bytes32 poolId, IAsset[] memory assets, uint256[] memory maxAmountsIn, bytes memory userData ) internal returns (uint256) { // Transfer assets from user to this contract for (uint256 i = 0; i < assets.length; i++) { IERC20(address(assets[i])).safeTransferFrom(msg.sender, address(this), maxAmountsIn[i]); IERC20(address(assets[i])).safeIncreaseAllowance(address(balancerVault), maxAmountsIn[i]); } IVault.JoinPoolRequest memory request = IVault.JoinPoolRequest({ assets: assets, maxAmountsIn: maxAmountsIn, userData: userData, fromInternalBalance: false }); // Join Balancer pool (address balancerPoolToken,) = balancerVault.getPool(poolId); uint256 balancerPoolTokenBalanceBefore = IERC20(balancerPoolToken).balanceOf(address(this)); balancerVault.joinPool(poolId, address(this), address(this), request); // Send back any remaining assets to user for (uint256 i = 1; i < assets.length; i++) { uint256 assetBalance = IERC20(address(assets[i])).balanceOf(address(this)); if (assetBalance > 0) { IERC20(address(assets[i])).safeTransfer(msg.sender, assetBalance); } } uint256 balancerPoolTokenBalanceAfter = IERC20(balancerPoolToken).balanceOf(address(this)); return balancerPoolTokenBalanceAfter - balancerPoolTokenBalanceBefore; } function exitPlazaAndBalancer( bytes32 balancerPoolId, address _plazaPool, IAsset[] memory assets, uint256 plazaTokenAmount, uint256[] memory minAmountsOut, bytes calldata userData, Pool.TokenType plazaTokenType, uint256 minbalancerPoolTokenOut ) external nonReentrant { // Step 1: Exit Plaza Pool uint256 balancerPoolTokenReceived = exitPlazaPool(plazaTokenType, _plazaPool, plazaTokenAmount, minbalancerPoolTokenOut); // Decode userData to get format and bptAmountIn (uint256 exitKind) = abi.decode(userData[:32], (uint256)); bytes memory newUserData; if (exitKind == 0) { // EXACT_BPT_IN_FOR_TOKENS_OUT uint256 exitTokenIndex; (,, exitTokenIndex) = abi.decode(userData, (uint256, uint256, uint256)); newUserData = abi.encode(uint256(0), balancerPoolTokenReceived, exitTokenIndex); } else if (exitKind == 1) { // EXACT_BPT_IN_FOR_ONE_TOKEN_OUT newUserData = abi.encode(uint256(1), balancerPoolTokenReceived); } // Step 2: Exit Balancer Pool exitBalancerPool(balancerPoolId, assets, minAmountsOut, newUserData, msg.sender); } function exitPlazaPool( Pool.TokenType tokenType, address _plazaPool, uint256 tokenAmount, uint256 minbalancerPoolTokenOut ) internal returns (uint256) { // Transfer Plaza tokens from user to this contract Pool plazaPool = Pool(_plazaPool); IERC20 plazaToken = tokenType == Pool.TokenType.BOND ? IERC20(address(plazaPool.bondToken())) : IERC20(address(plazaPool.lToken())); plazaToken.safeTransferFrom(msg.sender, address(this), tokenAmount); plazaToken.safeIncreaseAllowance(_plazaPool, tokenAmount); // Exit Plaza pool uint256 reservesRedeemedAmount = plazaPool.redeem(tokenType, tokenAmount, minbalancerPoolTokenOut); emit TokensRedeemed(_plazaPool, address(this), msg.sender, tokenType, tokenAmount, reservesRedeemedAmount); return reservesRedeemedAmount; } function exitBalancerPool( bytes32 poolId, IAsset[] memory assets, uint256[] memory minAmountsOut, bytes memory userData, address to ) internal { IVault.ExitPoolRequest memory request = IVault.ExitPoolRequest({ assets: assets, minAmountsOut: minAmountsOut, userData: userData, toInternalBalance: false }); balancerVault.exitPool(poolId, address(this), payable(to), request); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Auction} from "./Auction.sol"; import {BondToken} from "./BondToken.sol"; import {Decimals} from "./lib/Decimals.sol"; import {OracleFeeds} from "./OracleFeeds.sol"; import {Distributor} from "./Distributor.sol"; import {PoolFactory} from "./PoolFactory.sol"; import {Deployer} from "./utils/Deployer.sol"; import {Validator} from "./utils/Validator.sol"; import {OracleReader} from "./OracleReader.sol"; import {LeverageToken} from "./LeverageToken.sol"; import {ERC20Extensions} from "./lib/ERC20Extensions.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import {console2} from "forge-std/console2.sol"; /** * @title Pool * @dev This contract manages a pool of assets, allowing for the creatio and redemption of bond and leverage tokens. * It also handles distribution periods and interacts with an oracle for price information. */ contract Pool is Initializable, PausableUpgradeable, ReentrancyGuardUpgradeable, OracleReader, Validator { using Decimals for uint256; using SafeERC20 for IERC20; using ERC20Extensions for IERC20; // Constants uint256 private constant POINT_EIGHT = 800; // 1000 precision | 800=0.8 uint256 private constant POINT_TWO = 200; uint256 private constant COLLATERAL_THRESHOLD = 1200; uint256 private constant PRECISION = 1000; uint256 private constant BOND_TARGET_PRICE = 100; uint8 private constant COMMON_DECIMALS = 18; uint256 private constant SECONDS_PER_YEAR = 365 days; uint256 private constant MIN_POOL_SALE_LIMIT = 90; // 90% uint256 private constant AUCTION_START_BUFFER = 5 seconds; // Protocol PoolFactory public poolFactory; uint256 private fee; address public feeBeneficiary; uint256 private lastFeeClaimTime; uint256 private poolSaleLimit; uint256 public lastAuctionStart; // Tokens address public reserveToken; BondToken public bondToken; LeverageToken public lToken; // Coupon address public couponToken; // Distribution uint256 private sharesPerToken; uint256 private distributionPeriod; // in seconds uint256 private auctionPeriod; // in seconds uint256 private lastDistribution; // timestamp in seconds mapping(uint256 => address) public auctions; /** * @dev Enum representing the types of tokens that can be created or redeemed. */ enum TokenType { BOND, // bond LEVERAGE } /** * @dev Struct containing information about the pool's current state. */ struct PoolInfo { uint256 fee; uint256 reserve; //underlying token amount uint256 bondSupply; uint256 levSupply; uint256 sharesPerToken; uint256 currentPeriod; uint256 lastDistribution; uint256 distributionPeriod; uint256 auctionPeriod; address feeBeneficiary; } // Custom errors error MinAmount(); error ZeroAmount(); error FeeTooHigh(); error AccessDenied(); error NotBeneficiary(); error ZeroDebtSupply(); error AuctionIsOngoing(); error ZeroLeverageSupply(); error CallerIsNotAuction(); error DistributionPeriod(); error AuctionPeriodPassed(); error AuctionNotSucceeded(); error AuctionAlreadyStarted(); error AuctionRecentlyStarted(); error PoolSaleLimitTooLow(); error DistributionPeriodNotPassed(); // Events event AuctionStarted(address auction, uint256 period, uint256 couponAmountToDistribute); event Distributed(uint256 period, uint256 amount); event SharesPerTokenChanged(uint256 oldSharesPerToken,uint256 sharesPerToken); event Distributed(uint256 period, uint256 amount, address distributor); event AuctionPeriodChanged(uint256 oldPeriod, uint256 newPeriod); event DistributionRollOver(uint256 period, uint256 shares); event DistributionPeriodChanged(uint256 oldPeriod, uint256 newPeriod); event TokensCreated(address caller, address indexed onBehalfOf, TokenType tokenType, uint256 depositedAmount, uint256 mintedAmount); event TokensRedeemed(address caller, address indexed onBehalfOf, TokenType tokenType, uint256 depositedAmount, uint256 redeemedAmount); event FeeClaimed(address beneficiary, uint256 amount); event NoFeesToClaim(); event FeeChanged(uint256 oldFee, uint256 newFee); event PoolSaleLimitChanged(uint256 oldThreshold, uint256 newThreshold); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the contract with the given parameters. * @param _poolFactory Address of the pool factory contract. * @param _fee Fee percentage for the pool. * @param _reserveToken Address of the reserve token. * @param _dToken Address of the bond token. * @param _lToken Address of the leverage token. * @param _couponToken Address of the coupon token. * @param _sharesPerToken Initial shares per bond per distribution period. * @param _distributionPeriod Initial distribution period in seconds. * @param _oracleFeeds Address of the OracleFeeds contract. */ function initialize( address _poolFactory, uint256 _fee, address _reserveToken, address _dToken, address _lToken, address _couponToken, uint256 _sharesPerToken, uint256 _distributionPeriod, address _feeBeneficiary, address _oracleFeeds, bool _pauseOnCreation ) initializer public { __OracleReader_init(_oracleFeeds); __ReentrancyGuard_init(); __Pausable_init(); poolFactory = PoolFactory(_poolFactory); // Fee cannot exceed 10% require(_fee <= 100000, FeeTooHigh()); fee = _fee; reserveToken = _reserveToken; bondToken = BondToken(_dToken); lToken = LeverageToken(_lToken); couponToken = _couponToken; sharesPerToken = _sharesPerToken; distributionPeriod = _distributionPeriod; lastDistribution = block.timestamp; feeBeneficiary = _feeBeneficiary; lastFeeClaimTime = block.timestamp; poolSaleLimit = MIN_POOL_SALE_LIMIT; if (_pauseOnCreation) { _pause(); } } /** * @dev Sets the pool sale limit. Cannot be set below 90%. * @param _poolSaleLimit The new pool sale limit value. */ function setPoolSaleLimit(uint256 _poolSaleLimit) external onlyRole(poolFactory.GOV_ROLE()) { if (_poolSaleLimit < MIN_POOL_SALE_LIMIT) { revert PoolSaleLimitTooLow(); } uint256 oldThreshold = poolSaleLimit; poolSaleLimit = _poolSaleLimit; emit PoolSaleLimitChanged(oldThreshold, _poolSaleLimit); } /** * @dev Creates new tokens by depositing reserve tokens. * @param tokenType The type of token to create (BOND or LEVERAGE). * @param depositAmount The amount of reserve tokens to deposit. * @param minAmount The minimum amount of new tokens to receive. * @return amount of new tokens created. */ function create(TokenType tokenType, uint256 depositAmount, uint256 minAmount) external whenNotPaused() nonReentrant() passedRecentAuctionStart() returns(uint256) { return _create(tokenType, depositAmount, minAmount, address(0)); } /** * @dev Creates new tokens by depositing reserve tokens, with additional parameters for deadline and onBehalfOf for router support. * @param tokenType The type of token to create (BOND or LEVERAGE). * @param depositAmount The amount of reserve tokens to deposit. * @param minAmount The minimum amount of new tokens to receive. * @param deadline The deadline timestamp in seconds for the transaction to be executed. * @param onBehalfOf The address to receive the new tokens. * @return The amount of new tokens created. */ function create( TokenType tokenType, uint256 depositAmount, uint256 minAmount, uint256 deadline, address onBehalfOf) external whenNotPaused() nonReentrant() passedRecentAuctionStart() checkDeadline(deadline) returns(uint256) { return _create(tokenType, depositAmount, minAmount, onBehalfOf); } /** * @dev Creates new tokens by depositing reserve tokens, with additional parameters for deadline and onBehalfOf for router support. * @param tokenType The type of token to create (BOND or LEVERAGE). * @param depositAmount The amount of reserve tokens to deposit. * @param minAmount The minimum amount of new tokens to receive. * @param onBehalfOf The address to receive the new tokens. * @return The amount of new tokens created. */ function _create( TokenType tokenType, uint256 depositAmount, uint256 minAmount, address onBehalfOf ) private returns(uint256) { _claimFees(); // Get amount to mint uint256 amount = simulateCreate(tokenType, depositAmount); // Check slippage if (amount < minAmount) { revert MinAmount(); } // Mint amount should be higher than zero if (amount == 0) { revert ZeroAmount(); } address recipient = onBehalfOf == address(0) ? msg.sender : onBehalfOf; // Take reserveToken from user IERC20(reserveToken).safeTransferFrom(msg.sender, address(this), depositAmount); // Mint tokens if (tokenType == TokenType.BOND) { bondToken.mint(recipient, amount); } else { lToken.mint(recipient, amount); } emit TokensCreated(msg.sender, recipient, tokenType, depositAmount, amount); return amount; } /** * @dev Simulates the creation of new tokens without actually minting them. * @param tokenType The type of token to simulate creating (BOND or LEVERAGE). * @param depositAmount The amount of reserve tokens to simulate depositing. * @return amount of new tokens that would be created. */ function simulateCreate(TokenType tokenType, uint256 depositAmount) public view returns(uint256) { require(depositAmount > 0, ZeroAmount()); uint256 bondSupply = bondToken.totalSupply() .normalizeTokenAmount(address(bondToken), COMMON_DECIMALS); uint256 levSupply = lToken.totalSupply() .normalizeTokenAmount(address(lToken), COMMON_DECIMALS); uint256 poolReserves = IERC20(reserveToken).balanceOf(address(this)) .normalizeTokenAmount(reserveToken, COMMON_DECIMALS); depositAmount = depositAmount.normalizeTokenAmount(reserveToken, COMMON_DECIMALS); uint8 assetDecimals = 0; if (tokenType == TokenType.LEVERAGE) { assetDecimals = lToken.decimals(); } else { assetDecimals = bondToken.decimals(); } return getCreateAmount( tokenType, depositAmount, bondSupply, levSupply, poolReserves, getOraclePrice(reserveToken, USD), getOracleDecimals(reserveToken, USD) ).normalizeAmount(COMMON_DECIMALS, assetDecimals); } /** * @dev Calculates the amount of new tokens to create based on the current pool state and oracle price. * @param tokenType The type of token to create (BOND or LEVERAGE). * @param depositAmount The amount of reserve tokens to deposit. * @param bondSupply The current supply of bond tokens. * @param levSupply The current supply of leverage tokens. * @param poolReserves The current amount of reserve tokens in the pool. * @param ethPrice The current ETH price from the oracle. * @param oracleDecimals The number of decimals used by the oracle. * @return amount of new tokens to create. */ function getCreateAmount( TokenType tokenType, uint256 depositAmount, uint256 bondSupply, uint256 levSupply, uint256 poolReserves, uint256 ethPrice, uint8 oracleDecimals) public pure returns(uint256) { if (bondSupply == 0) { revert ZeroDebtSupply(); } console2.log("depositAmount", depositAmount); console2.log("ethPrice", ethPrice); console2.log("poolReserves", poolReserves); console2.log("bondSupply", bondSupply); console2.log("levSupply", levSupply); uint256 assetSupply = bondSupply; uint256 multiplier = POINT_EIGHT; if (tokenType == TokenType.LEVERAGE) { multiplier = POINT_TWO; assetSupply = levSupply; } console2.log("oracleDecimals", oracleDecimals); uint256 tvl = (ethPrice * poolReserves).toBaseUnit(oracleDecimals); uint256 collateralLevel = (tvl * PRECISION) / (bondSupply * BOND_TARGET_PRICE); uint256 creationRate = BOND_TARGET_PRICE * PRECISION; console2.log("tvl", tvl); console2.log("collateralLevel", collateralLevel); console2.log("creationRate", creationRate); if (collateralLevel <= COLLATERAL_THRESHOLD) { if (tokenType == TokenType.LEVERAGE && assetSupply == 0) { revert ZeroLeverageSupply(); } creationRate = (tvl * multiplier) / assetSupply; } else if (tokenType == TokenType.LEVERAGE) { if (assetSupply == 0) { revert ZeroLeverageSupply(); } uint256 adjustedValue = tvl - (BOND_TARGET_PRICE * bondSupply); creationRate = (adjustedValue * PRECISION) / assetSupply; } return ((depositAmount * ethPrice * PRECISION) / creationRate).toBaseUnit(oracleDecimals); } /** * @dev Redeems tokens for reserve tokens. * @param tokenType The type of derivative token to redeem (BOND or LEVERAGE). * @param depositAmount The amount of derivative tokens to redeem. * @param minAmount The minimum amount of reserve tokens to receive. * @return amount of reserve tokens received. */ function redeem(TokenType tokenType, uint256 depositAmount, uint256 minAmount) public whenNotPaused() nonReentrant() passedRecentAuctionStart() returns(uint256) { return _redeem(tokenType, depositAmount, minAmount, address(0)); } /** * @dev Redeems tokens for reserve tokens, with additional parameters. * @param tokenType The type of derivative token to redeem (BOND or LEVERAGE). * @param depositAmount The amount of derivative tokens to redeem. * @param minAmount The minimum amount of reserve tokens to receive. * @param deadline The deadline timestamp in seconds for the transaction to be executed. * @param onBehalfOf The address to receive the reserve tokens. * @return amount of reserve tokens received. */ function redeem( TokenType tokenType, uint256 depositAmount, uint256 minAmount, uint256 deadline, address onBehalfOf) external whenNotPaused() nonReentrant() passedRecentAuctionStart() checkDeadline(deadline) returns(uint256) { return _redeem(tokenType, depositAmount, minAmount, onBehalfOf); } /** * @dev Redeems tokens for reserve tokens, with additional parameters. * @param tokenType The type of derivative token to redeem (BOND or LEVERAGE). * @param depositAmount The amount of derivative tokens to redeem. * @param minAmount The minimum amount of reserve tokens to receive. * @param onBehalfOf The address to receive the reserve tokens. * @return amount of reserve tokens received. */ function _redeem( TokenType tokenType, uint256 depositAmount, uint256 minAmount, address onBehalfOf) private returns(uint256) { _claimFees(); // Get amount to mint uint256 reserveAmount = simulateRedeem(tokenType, depositAmount); // Check whether reserve contains enough funds if (reserveAmount < minAmount) { revert MinAmount(); } // Reserve amount should be higher than zero if (reserveAmount == 0) { revert ZeroAmount(); } // Burn derivative tokens if (tokenType == TokenType.BOND) { bondToken.burn(msg.sender, depositAmount); } else { lToken.burn(msg.sender, depositAmount); } address recipient = onBehalfOf == address(0) ? msg.sender : onBehalfOf; IERC20(reserveToken).safeTransfer(recipient, reserveAmount); emit TokensRedeemed(msg.sender, recipient, tokenType, depositAmount, reserveAmount); return reserveAmount; } /** * @dev Simulates the redemption of tokens without actually burning them. * @param tokenType The type of derivative token to simulate redeeming (BOND or LEVERAGE). * @param depositAmount The amount of derivative tokens to simulate redeeming. * @return amount of reserve tokens that would be received. */ function simulateRedeem(TokenType tokenType, uint256 depositAmount) public view returns(uint256) { require(depositAmount > 0, ZeroAmount()); uint256 bondSupply = bondToken.totalSupply() .normalizeTokenAmount(address(bondToken), COMMON_DECIMALS); uint256 levSupply = lToken.totalSupply() .normalizeTokenAmount(address(lToken), COMMON_DECIMALS); uint256 poolReserves = IERC20(reserveToken).balanceOf(address(this)) .normalizeTokenAmount(reserveToken, COMMON_DECIMALS); // Calculate and subtract fees from poolReserves poolReserves = poolReserves - (poolReserves * fee * (block.timestamp - lastFeeClaimTime)) / (PRECISION * SECONDS_PER_YEAR); address derivTokenToRedeem = tokenType == TokenType.LEVERAGE ? address(lToken) : address(bondToken); depositAmount = depositAmount.normalizeTokenAmount(derivTokenToRedeem, COMMON_DECIMALS); uint8 oracleDecimals = getOracleDecimals(reserveToken, USD); uint8 sharesDecimals = bondToken.SHARES_DECIMALS(); uint256 marketRate; address feed = OracleFeeds(oracleFeeds).priceFeeds(derivTokenToRedeem, USD); if (feed != address(0)) { marketRate = getOraclePrice(derivTokenToRedeem, USD) .normalizeAmount( getOracleDecimals(derivTokenToRedeem, USD), sharesDecimals // this is the decimals of the reserve token chainlink feed ); } return getRedeemAmount( tokenType, depositAmount, bondSupply, levSupply, poolReserves, getOraclePrice(reserveToken, USD), oracleDecimals, marketRate ).normalizeAmount(COMMON_DECIMALS, IERC20(reserveToken).safeDecimals()); } /** * @dev Calculates the amount of reserve tokens to be redeemed for a given amount of bond or leverage tokens. * @param tokenType The type of derivative token being redeemed (BOND or LEVERAGE). * @param depositAmount The amount of derivative tokens being redeemed. * @param bondSupply The total supply of bond tokens. * @param levSupply The total supply of leverage tokens. * @param poolReserves The total amount of reserve tokens in the pool. * @param ethPrice The current ETH price from the oracle. * @param oracleDecimals The number of decimals used by the oracle. * @param marketRate The current market rate of the bond token. * @return amount of reserve tokens to be redeemed. */ function getRedeemAmount( TokenType tokenType, uint256 depositAmount, uint256 bondSupply, uint256 levSupply, uint256 poolReserves, uint256 ethPrice, uint8 oracleDecimals, uint256 marketRate ) public pure returns(uint256) { if (bondSupply == 0) { revert ZeroDebtSupply(); } uint256 tvl = (ethPrice * poolReserves).toBaseUnit(oracleDecimals); uint256 assetSupply = bondSupply; uint256 multiplier = POINT_EIGHT; // Calculate the collateral level based on the token type uint256 collateralLevel = (tvl * PRECISION) / (bondSupply * BOND_TARGET_PRICE); if (tokenType == TokenType.LEVERAGE){ multiplier = POINT_TWO; assetSupply = levSupply; if (assetSupply == 0) revert ZeroLeverageSupply(); } // Calculate the redeem rate based on the collateral level and token type uint256 redeemRate; if (collateralLevel <= COLLATERAL_THRESHOLD) { redeemRate = ((tvl * multiplier) / assetSupply); } else if (tokenType == TokenType.LEVERAGE) { redeemRate = ((tvl - (bondSupply * BOND_TARGET_PRICE)) * PRECISION / assetSupply); } else { redeemRate = BOND_TARGET_PRICE * PRECISION; } if (marketRate != 0 && marketRate < redeemRate) { redeemRate = marketRate; } // Calculate and return the final redeem amount return ((depositAmount * redeemRate).fromBaseUnit(oracleDecimals) / ethPrice) / PRECISION; } /** * @dev Starts an auction for the current period. */ function startAuction() external whenNotPaused() { // Check if distribution period has passed require(lastDistribution + distributionPeriod < block.timestamp, DistributionPeriodNotPassed()); // Check if auction period hasn't passed require(lastDistribution + distributionPeriod + auctionPeriod >= block.timestamp, AuctionPeriodPassed()); // Check if auction for current period has already started (uint256 currentPeriod,) = bondToken.globalPool(); require(auctions[currentPeriod] == address(0), AuctionAlreadyStarted()); uint8 bondDecimals = bondToken.decimals(); uint8 sharesDecimals = bondToken.SHARES_DECIMALS(); uint8 maxDecimals = bondDecimals > sharesDecimals ? bondDecimals : sharesDecimals; uint256 normalizedTotalSupply = bondToken.totalSupply().normalizeAmount(bondDecimals, maxDecimals); uint256 normalizedShares = sharesPerToken.normalizeAmount(sharesDecimals, maxDecimals); // Calculate the coupon amount to distribute uint256 couponAmountToDistribute = (normalizedTotalSupply * normalizedShares) .toBaseUnit(maxDecimals * 2 - IERC20(couponToken).safeDecimals()); // Round UP the coupon amount relative to slot size uint256 maxBids = 1000; couponAmountToDistribute = ((couponAmountToDistribute + maxBids - 1) / maxBids) * maxBids; address auction = Deployer(poolFactory.deployer()).deployAuction( address(this), address(couponToken), address(reserveToken), couponAmountToDistribute, block.timestamp + auctionPeriod, maxBids, address(this), poolSaleLimit ); auctions[currentPeriod] = auction; // Increase the bond token period bondToken.increaseIndexedAssetPeriod(sharesPerToken); // Update last distribution time lastDistribution += distributionPeriod; lastAuctionStart = block.timestamp; emit AuctionStarted(auction, currentPeriod, couponAmountToDistribute); } /** * @dev Transfers reserve tokens to the current auction. * @param amount The amount of reserve tokens to transfer. */ function transferReserveToAuction(uint256 amount) external virtual { require(msg.sender == lastAuction(), CallerIsNotAuction()); IERC20(reserveToken).safeTransfer(msg.sender, amount); } /** * @dev Sets the shares per token for the last period to 0. Only called when an auction fails. */ function zeroLastSharesPerToken() external { require(msg.sender == lastAuction(), CallerIsNotAuction()); bondToken.zeroLastSharesPerToken(); } /** * @dev Distributes coupon tokens to bond token holders. * Can only be called after the distribution period has passed. */ function distribute() external whenNotPaused { (uint256 currentPeriod,) = bondToken.globalPool(); require(currentPeriod > 0, AccessDenied()); // Period is increased when auction starts, we want to distribute for the previous period uint256 previousPeriod = currentPeriod - 1; uint256 couponAmountToDistribute = Auction(auctions[previousPeriod]).totalBuyCouponAmount(); if (Auction(auctions[previousPeriod]).state() == Auction.State.FAILED_POOL_SALE_LIMIT || Auction(auctions[previousPeriod]).state() == Auction.State.FAILED_UNDERSOLD) { emit DistributionRollOver(previousPeriod, couponAmountToDistribute); return; } if (Auction(auctions[previousPeriod]).state() != Auction.State.SUCCEEDED) { revert AuctionIsOngoing(); } // Get Distributor address distributor = poolFactory.distributors(address(this)); // Transfer coupon tokens to the distributor IERC20(couponToken).safeTransfer(distributor, couponAmountToDistribute); // Update distributor with the amount to distribute Distributor(distributor).allocate(couponAmountToDistribute); emit Distributed(previousPeriod, couponAmountToDistribute, distributor); } /** * @dev Returns the current pool information. * @return info A struct containing various pool parameters and balances in the following order: * {fee, distributionPeriod, reserve, bondSupply, levSupply, sharesPerToken, currentPeriod, lastDistribution, auctionPeriod, feeBeneficiary} */ function getPoolInfo() external view returns (PoolInfo memory info) { (uint256 currentPeriod, uint256 _sharesPerToken) = bondToken.globalPool(); info = PoolInfo({ fee: fee, distributionPeriod: distributionPeriod, reserve: IERC20(reserveToken).balanceOf(address(this)), bondSupply: bondToken.totalSupply(), levSupply: lToken.totalSupply(), sharesPerToken: _sharesPerToken, currentPeriod: currentPeriod, lastDistribution: lastDistribution, auctionPeriod: auctionPeriod, feeBeneficiary: feeBeneficiary }); } /** * @dev Sets the distribution period. * @param _distributionPeriod The new distribution period. */ function setDistributionPeriod(uint256 _distributionPeriod) external NotInAuction onlyRole(poolFactory.GOV_ROLE()) { uint256 oldPeriod = distributionPeriod; distributionPeriod = _distributionPeriod; emit DistributionPeriodChanged(oldPeriod, _distributionPeriod); } /** * @dev Sets the auction period. * @param _auctionPeriod The new auction period. */ function setAuctionPeriod(uint256 _auctionPeriod) external NotInAuction onlyRole(poolFactory.GOV_ROLE()) { uint256 oldPeriod = auctionPeriod; auctionPeriod = _auctionPeriod; emit AuctionPeriodChanged(oldPeriod, _auctionPeriod); } /** * @dev Sets the fee for the pool. * @param _fee The new fee value. */ function setFee(uint256 _fee) external onlyRole(poolFactory.GOV_ROLE()) { // Fee cannot exceed 10% require(_fee <= 100, FeeTooHigh()); // Force a fee claim to prevent governance from setting a higher fee // and collecting increased fees on old deposits if (getFeeAmount() > 0) { claimFees(); } uint256 oldFee = fee; fee = _fee; emit FeeChanged(oldFee, _fee); } /** * @dev Sets the fee beneficiary for the pool. * @param _feeBeneficiary The address of the new fee beneficiary. */ function setFeeBeneficiary(address _feeBeneficiary) external onlyRole(poolFactory.GOV_ROLE()) { feeBeneficiary = _feeBeneficiary; } /** * @dev Allows the fee beneficiary to claim the accumulated protocol fees. */ function claimFees() public nonReentrant { _claimFees(); } /** * @dev Returns the amount of fees to be claimed. * @return The amount of fees to be claimed. */ function getFeeAmount() internal view returns (uint256) { return (IERC20(reserveToken).balanceOf(address(this)) * fee * (block.timestamp - lastFeeClaimTime)) / (PRECISION * SECONDS_PER_YEAR); } function _claimFees() internal { uint256 feeAmount = getFeeAmount(); if (feeAmount == 0) { emit NoFeesToClaim(); return; } lastFeeClaimTime = block.timestamp; IERC20(reserveToken).safeTransfer(feeBeneficiary, feeAmount); emit FeeClaimed(feeBeneficiary, feeAmount); } function lastAuction() internal view returns (address) { (uint256 currentPeriod,) = bondToken.globalPool(); return auctions[currentPeriod-1]; } /** * @dev Pauses the contract. Reverts any interaction except upgrade. */ function pause() external onlyRole(poolFactory.SECURITY_COUNCIL_ROLE()) { _pause(); } /** * @dev Unpauses the contract. */ function unpause() external onlyRole(poolFactory.SECURITY_COUNCIL_ROLE()) { _unpause(); } /** * @dev Modifier to check if the caller has the specified role. * @param role The role to check for. */ modifier onlyRole(bytes32 role) { if (!poolFactory.hasRole(role, msg.sender)) { revert AccessDenied(); } _; } /** * @dev Modifier to prevent a function from being called during an ongoing auction. */ modifier NotInAuction() { (uint256 currentPeriod,) = bondToken.globalPool(); require(auctions[currentPeriod] == address(0), AuctionIsOngoing()); _; } modifier passedRecentAuctionStart() { if (lastAuctionStart + AUCTION_START_BUFFER > block.timestamp) { revert AuctionRecentlyStarted(); } _; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Pool} from "./Pool.sol"; import {BondToken} from "./BondToken.sol"; import {PoolFactory} from "./PoolFactory.sol"; import {LeverageToken} from "./LeverageToken.sol"; import {BalancerOracleAdapter} from "./BalancerOracleAdapter.sol"; import {IManagedPoolFactory, ManagedPoolParams, ManagedPoolSettingsParams} from "./lib/balancer/IManagedPoolFactory.sol"; import {IManagedPool} from "./lib/balancer/IManagedPool.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; import {IVault} from "@balancer/contracts/interfaces/contracts/vault/IVault.sol"; import {IAsset} from "@balancer/contracts/interfaces/contracts/vault/IAsset.sol"; contract PreDeposit is Initializable, OwnableUpgradeable, ReentrancyGuardUpgradeable, UUPSUpgradeable, PausableUpgradeable { using SafeERC20 for IERC20; address public constant ETH = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); uint256 private constant BALANCER_MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%, enforced by Balancer // Initializing pool params address public pool; PoolFactory private factory; PoolFactory.PoolParams private params; BalancerOracleAdapter public balancerOracleAdapter; IManagedPoolFactory public balancerManagedPoolFactory; IVault public balancerVault; uint256 public depositCap; uint256 private bondAmount; uint256 private leverageAmount; string private bondName; string private bondSymbol; string private leverageName; string private leverageSymbol; uint256 public depositStartTime; uint256 public depositEndTime; bool public poolCreated; uint256 public nAllowedTokens; uint256 public snapshotCapValue; mapping(address => bool) public isAllowedToken; mapping(uint256 => address) public allowedTokens; mapping(address => uint256) public tokenSnapshotPrices; // Deposit balances mapping(address => mapping(address => uint256)) public balances; // user => token => amount // Events event PoolCreated(address indexed pool); event BalancerPoolCreated(address indexed balancerPool); event DepositCapIncreased(uint256 newReserveCap); event Deposited(address indexed user, address[] tokens, uint256[] amounts); event Withdrawn(address indexed user, address[] tokens, uint256[] amounts); event Claimed(address indexed user, uint256 bondAmount, uint256 leverageAmount); event InitialPoolWeights(uint256[] weights); event TokenExcluded(address token); // Errors error DepositEnded(); error NothingToClaim(); error DepositNotEnded(); error NoReserveAmount(); error CapMustIncrease(); error DepositCapReached(); error InsufficientBalance(); error InvalidReserveToken(); error DepositNotYetStarted(); error DepositAlreadyStarted(); error ClaimPeriodNotStarted(); error DepositEndMustBeAfterStart(); error InvalidBondOrLeverageAmount(); error DepositEndMustOnlyBeExtended(); error DepositStartMustOnlyBeExtended(); error PoolAlreadyCreated(); error NoTokenValue(); error InvalidArrayLengths(); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the contract with pool parameters and configuration. * @param _params Pool parameters struct * @param _factory Address of the pool factory * @param _depositStartTime Start time for deposits * @param _depositEndTime End time for deposits * @param _depositCap Maximum deposit amount * @param _bondName Name of the bond token * @param _bondSymbol Symbol of the bond token * @param _leverageName Name of the leverage token * @param _leverageSymbol Symbol of the leverage token */ function initialize( PoolFactory.PoolParams memory _params, address _factory, address _balancerManagedPoolFactory, address _balancerVault, address _balancerOracleAdapter, uint256 _depositStartTime, uint256 _depositEndTime, uint256 _depositCap, address[] memory _allowedTokens, string memory _bondName, string memory _bondSymbol, string memory _leverageName, string memory _leverageSymbol ) initializer public { __UUPSUpgradeable_init(); __ReentrancyGuard_init(); __Ownable_init(msg.sender); params = _params; depositStartTime = _depositStartTime; depositEndTime = _depositEndTime; depositCap = _depositCap; factory = PoolFactory(_factory); balancerManagedPoolFactory = IManagedPoolFactory(_balancerManagedPoolFactory); balancerVault = IVault(_balancerVault); balancerOracleAdapter = BalancerOracleAdapter(_balancerOracleAdapter); bondName = _bondName; bondSymbol = _bondSymbol; leverageName = _leverageName; leverageSymbol = _leverageSymbol; poolCreated = false; _allowedTokens = _sortAddresses(_allowedTokens); for (uint256 i = 0; i < _allowedTokens.length; i++) { isAllowedToken[_allowedTokens[i]] = true; allowedTokens[i] = _allowedTokens[i]; } nAllowedTokens = _allowedTokens.length; } function deposit(address[] memory tokens, uint256[] memory amounts, address onBehalfOf) external nonReentrant whenNotPaused { _deposit(tokens, amounts, onBehalfOf); } function deposit(address[] memory tokens, uint256[] memory amounts) external nonReentrant whenNotPaused { _deposit(tokens, amounts, msg.sender); } function _deposit(address[] memory tokens, uint256[] memory amounts, address recipient) private checkDepositStarted checkDepositNotEnded { _checkArrayLengths(tokens, amounts); _checkCap(tokens, amounts); for (uint256 i = 0; i < tokens.length; i++) { IERC20(tokens[i]).safeTransferFrom(msg.sender, address(this), amounts[i]); address token = tokens[i]; uint256 amount = amounts[i]; balances[recipient][token] += amount; } emit Deposited(recipient, tokens, amounts); } function withdraw(address[] memory tokens, uint256[] memory amounts) external nonReentrant whenNotPaused checkDepositStarted { _checkArrayLengths(tokens, amounts); for (uint256 i = 0; i < tokens.length; i++) { address token = tokens[i]; uint256 amount = amounts[i]; if (balances[msg.sender][token] < amount) revert InsufficientBalance(); balances[msg.sender][token] -= amount; IERC20(token).safeTransfer(msg.sender, amount); } emit Withdrawn(msg.sender, tokens, amounts); } /** * @dev * First creates a new managed Balancer pool * then joins the Balancer pool * then finally creates a new plaza pool * * User shares are calculated based on the value of their deposit at the time of pool creation */ function createPool(bytes32 salt) external nonReentrant whenNotPaused checkDepositEnded { IAsset[] memory tokens = new IAsset[](nAllowedTokens); uint256[] memory amounts = new uint256[](nAllowedTokens); uint256[] memory normalizedWeights = new uint256[](nAllowedTokens); uint256 _snapshotCapValue = currentPredepositTotal(); snapshotCapValue = _snapshotCapValue; if (_snapshotCapValue == 0) revert NoReserveAmount(); if (bondAmount == 0 || leverageAmount == 0) revert InvalidBondOrLeverageAmount(); if (poolCreated) revert PoolAlreadyCreated(); for (uint256 i = 0; i < nAllowedTokens; i++) { tokens[i] = IAsset(allowedTokens[i]); amounts[i] = IERC20(allowedTokens[i]).balanceOf(address(this)); // Fetch the prices and store in snapshot. We calculate user shares based on value at pool creation time uint256 tokenPrice = balancerOracleAdapter.getOraclePrice(address(tokens[i]), ETH); tokenSnapshotPrices[address(tokens[i])] = tokenPrice; // Determine the normalized weights of the tokens based on the balances of each token // Done by calculating the ratio in terms of number of tokens * price of token in terms of ETH normalizedWeights[i] = amounts[i] * tokenPrice / _snapshotCapValue; IERC20(address(tokens[i])).approve(address(balancerVault), amounts[i]); } normalizedWeights = _validateNormalizedWeights(normalizedWeights); // Create a new managed Balancer pool address[] memory assetManagers = new address[](nAllowedTokens); ManagedPoolParams memory balancerPoolParams = ManagedPoolParams({ name: "Plaza Eth Balancer Pool", symbol: "PLAZA-ETH-BLP", assetManagers: assetManagers }); ManagedPoolSettingsParams memory balancerPoolSettingsParams = ManagedPoolSettingsParams({ tokens: tokens, normalizedWeights: normalizedWeights, swapFeePercentage: BALANCER_MIN_SWAP_FEE_PERCENTAGE, swapEnabledOnStart: true, mustAllowlistLPs: false, managementAumFeePercentage: 0, aumFeeId: 0 }); IERC20 balancerPoolToken = IERC20(balancerManagedPoolFactory.create(balancerPoolParams, balancerPoolSettingsParams, owner(), salt)); // Join Balancer pool bytes memory userData = abi.encode(0, amounts); // amounts in userData does not include lp token amounts = _prependUint256Max(amounts); tokens = _prependLpToken(tokens, address(balancerPoolToken)); IVault.JoinPoolRequest memory request = IVault.JoinPoolRequest({ assets: tokens, maxAmountsIn: amounts, userData: userData, fromInternalBalance: false }); balancerVault.joinPool(IManagedPool(address(balancerPoolToken)).getPoolId(), address(this), address(this), request); uint256 reserveAmount = balancerPoolToken.balanceOf(address(this)); params.reserveToken = address(balancerPoolToken); balancerPoolToken.approve(address(factory), reserveAmount); pool = factory.createPool(params, reserveAmount, bondAmount, leverageAmount, bondName, bondSymbol, leverageName, leverageSymbol, true); emit InitialPoolWeights(normalizedWeights); emit BalancerPoolCreated(address(balancerPoolToken)); emit PoolCreated(pool); poolCreated = true; } /** * @dev Allows users to claim their share of bond and leverage tokens after pool creation. */ function claim() external nonReentrant whenNotPaused checkDepositEnded { if (pool == address(0)) revert ClaimPeriodNotStarted(); // Cleaner to just bruteforce check user's contribution for each whitelisted token uint256 userValueContribution; for (uint256 i = 0; i < nAllowedTokens; i++) { address token = allowedTokens[i]; uint256 userTokenBalance = balances[msg.sender][token]; if (userTokenBalance > 0) { userValueContribution += (userTokenBalance * tokenSnapshotPrices[token]) / 1e18; balances[msg.sender][token] = 0; } } if (userValueContribution == 0) revert NothingToClaim(); address bondToken = address(Pool(pool).bondToken()); address leverageToken = address(Pool(pool).lToken()); uint256 userBondShare = (bondAmount * userValueContribution) / snapshotCapValue; uint256 userLeverageShare = (leverageAmount * userValueContribution) / snapshotCapValue; if (userBondShare > 0) { IERC20(bondToken).safeTransfer(msg.sender, userBondShare); } if (userLeverageShare > 0) { IERC20(leverageToken).safeTransfer(msg.sender, userLeverageShare); } emit Claimed(msg.sender, userBondShare, userLeverageShare); } /** * @dev Updates pool parameters. Can only be called by owner before deposit end time. * @param _params New pool parameters */ function setParams(PoolFactory.PoolParams memory _params) external onlyOwner checkDepositNotEnded { if (poolCreated) revert PoolAlreadyCreated(); params = _params; } /** * @dev Sets the bond and leverage token amounts. Can only be called by owner before deposit end time. * @param _bondAmount Amount of bond tokens * @param _leverageAmount Amount of leverage tokens */ function setBondAndLeverageAmount(uint256 _bondAmount, uint256 _leverageAmount) external onlyOwner checkDepositEnded { if (poolCreated) revert PoolAlreadyCreated(); bondAmount = _bondAmount; leverageAmount = _leverageAmount; } /** * @dev Increases the reserve cap. Can only be called by owner before deposit end time. * @param newDepositCap New maximum deposit amount */ function increaseDepositCap(uint256 newDepositCap) external onlyOwner checkDepositNotEnded { if (newDepositCap <= depositCap) revert CapMustIncrease(); if (poolCreated) revert PoolAlreadyCreated(); depositCap = newDepositCap; emit DepositCapIncreased(newDepositCap); } /** * @dev Updates the deposit start time. Can only be called by owner before current start time. * @param newDepositStartTime New deposit start timestamp */ function setDepositStartTime(uint256 newDepositStartTime) external onlyOwner { if (block.timestamp >= depositStartTime) revert DepositAlreadyStarted(); if (newDepositStartTime <= depositStartTime) revert DepositStartMustOnlyBeExtended(); if (newDepositStartTime >= depositEndTime) revert DepositEndMustBeAfterStart(); depositStartTime = newDepositStartTime; } /** * @dev Updates the deposit end time. Can only be called by owner before current end time. * @param newDepositEndTime New deposit end timestamp */ function setDepositEndTime(uint256 newDepositEndTime) external onlyOwner checkDepositNotEnded { if (newDepositEndTime <= depositEndTime) revert DepositEndMustOnlyBeExtended(); if (newDepositEndTime <= depositStartTime) revert DepositEndMustBeAfterStart(); if (poolCreated) revert PoolAlreadyCreated(); depositEndTime = newDepositEndTime; } /** * @dev Returns the current deposit amount in terms of ETH. * @return The current deposit amount in ETH */ function currentPredepositTotal() public view returns (uint256) { uint256 totalValue; for (uint256 i = 0; i < nAllowedTokens; i++) { address token = allowedTokens[i]; uint256 price = balancerOracleAdapter.getOraclePrice(token, ETH); totalValue += (IERC20(token).balanceOf(address(this)) * price) / 1e18; } return totalValue; } function getAllowedTokens() external view returns (address[] memory) { address[] memory tokens = new address[](nAllowedTokens); for (uint256 i = 0; i < nAllowedTokens; i++) { tokens[i] = allowedTokens[i]; } return tokens; } /** * @dev Checks if the deposit cap is reached. Taking a portion of the user deposit if the full amount would exceed the * cap leads to other issues such as determining which of the token amounts can fit inside cap, users preferred token * to be taken etc. Better to handle amounts and cap checks from frontend. * @param tokens Array of tokens to check * @param amounts Array of amounts to check */ function _checkCap(address[] memory tokens, uint256[] memory amounts) private view { uint256 totalUserDepositValue; for (uint256 i = 0; i < tokens.length; i++) { address token = tokens[i]; _checkTokenAllowed(token); uint256 price = balancerOracleAdapter.getOraclePrice(token, ETH); uint256 tokenDepositValue = (amounts[i] * price) / 1e18; if (tokenDepositValue == 0) revert NoTokenValue(); totalUserDepositValue += tokenDepositValue; } if (totalUserDepositValue + currentPredepositTotal() > depositCap) revert DepositCapReached(); } function _checkTokenAllowed(address token) private view { if (!isAllowedToken[token]) revert InvalidReserveToken(); } /** * @dev Validates the normalized weights of the tokens to ensure that the sum is 1e18. * @param normalizedWeights Array of normalized weights * @return Validated array of normalized weights */ function _validateNormalizedWeights(uint256[] memory normalizedWeights) private returns (uint256[] memory) { uint256 MIN_WEIGHT = 1e16; // 1% // First pass: count valid tokens and sum their weights uint256 validTokenCount = 0; uint256 totalValidWeight = 0; bool[] memory isValid = new bool[](normalizedWeights.length); for (uint256 i = 0; i < normalizedWeights.length; i++) { if (normalizedWeights[i] >= MIN_WEIGHT) { isValid[i] = true; validTokenCount++; totalValidWeight += normalizedWeights[i]; } else { isAllowedToken[allowedTokens[i]] = false; emit TokenExcluded(allowedTokens[i]); } } // Create new arrays for valid tokens and weights uint256[] memory validatedWeights = new uint256[](validTokenCount); address[] memory validTokens = new address[](validTokenCount); uint256 validIndex = 0; // Second pass: normalize weights and update token array for (uint256 i = 0; i < normalizedWeights.length; i++) { if (isValid[i]) { // Normalize weight relative to total valid weight validatedWeights[validIndex] = (normalizedWeights[i] * 1e18) / totalValidWeight; validTokens[validIndex] = allowedTokens[i]; validIndex++; } } // Ensure total weight is exactly 1e18 uint256 totalWeight = 0; for (uint256 i = 0; i < validatedWeights.length; i++) { totalWeight += validatedWeights[i]; } // Add or remove weight from largest weight if needed if (totalWeight > 1e18) { validatedWeights[_getLargestIndex(validatedWeights)] -= totalWeight - 1e18; // Remove excess weight } else if (totalWeight < 1e18) { validatedWeights[_getLargestIndex(validatedWeights)] += 1e18 - totalWeight; // Add missing weight } // Update contract state to reflect removed tokens if (validTokenCount < nAllowedTokens) { nAllowedTokens = validTokenCount; for (uint256 i = 0; i < validTokenCount; i++) { allowedTokens[i] = validTokens[i]; } snapshotCapValue = currentPredepositTotal(); } return validatedWeights; } /** * @dev Prepends a uint256 max value to the array of amounts. BalancerV2 uses the lptoken itself as the first asset * @param amounts Array of amounts * @return Array of amounts with a uint256 max value at the beginning */ function _prependUint256Max(uint256[] memory amounts) public pure returns (uint256[] memory) { uint256[] memory newAmounts = new uint256[](amounts.length + 1); newAmounts[0] = type(uint256).max; for (uint256 i = 0; i < amounts.length; i++) { newAmounts[i + 1] = amounts[i]; } return newAmounts; } /** * @dev Prepends an lp token to the array of tokens. * @param tokens Array of tokens * @param lpToken Address of the lp token * @return Array of tokens with the lp token at the beginning */ function _prependLpToken(IAsset[] memory tokens, address lpToken) public pure returns (IAsset[] memory) { IAsset[] memory newTokens = new IAsset[](tokens.length + 1); newTokens[0] = IAsset(lpToken); for (uint256 i = 0; i < tokens.length; i++) { newTokens[i + 1] = tokens[i]; } return newTokens; } /** * @dev Sorts the addresses in ascending order. * @param addresses Array of addresses to sort * @return Sorted array of addresses */ function _sortAddresses(address[] memory addresses) private pure returns (address[] memory) { for (uint256 i = 0; i < addresses.length; i++) { for (uint256 j = i + 1; j < addresses.length; j++) { if (addresses[i] > addresses[j]) { (addresses[i], addresses[j]) = (addresses[j], addresses[i]); } } } return addresses; } function _getLargestIndex(uint256[] memory values) private pure returns (uint256) { uint256 largestIndex = 0; for (uint256 i = 1; i < values.length; i++) { if (values[i] > values[largestIndex]) { largestIndex = i; } } return largestIndex; } function _checkArrayLengths(address[] memory tokens, uint256[] memory amounts) private pure { if (tokens.length != amounts.length) revert InvalidArrayLengths(); } /** * @dev Pauses the contract. Reverts any interaction except upgrade. */ function pause() external onlyOwner { _pause(); } /** * @dev Unpauses the contract. */ function unpause() external onlyOwner { _unpause(); } /** * @dev Authorizes an upgrade to a new implementation. * Can only be called by the owner of the contract. * @param newImplementation The address of the new implementation. */ function _authorizeUpgrade(address newImplementation) internal onlyOwner override {} modifier checkDepositNotEnded() { if (block.timestamp >= depositEndTime) revert DepositEnded(); _; } modifier checkDepositStarted() { if (block.timestamp < depositStartTime) revert DepositNotYetStarted(); _; } modifier checkDepositEnded() { if (block.timestamp < depositEndTime) revert DepositNotEnded(); _; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "../solidity-utils/helpers/IAuthentication.sol"; import "../solidity-utils/helpers/ISignaturesValidator.sol"; import "../solidity-utils/helpers/ITemporarilyPausable.sol"; import "../solidity-utils/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity >=0.7.0 <0.9.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; import "../solidity-utils/openzeppelin/IERC20.sol"; library WeightedPoolUserData { // In order to preserve backwards compatibility, make sure new join and exit kinds are added at the end of the enum. enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT } function joinKind(bytes memory self) internal pure returns (JoinKind) { return abi.decode(self, (JoinKind)); } function exitKind(bytes memory self) internal pure returns (ExitKind) { return abi.decode(self, (ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (JoinKind, uint256, uint256)); } function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) { (, bptAmountOut) = abi.decode(self, (JoinKind, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import {Pool} from "./Pool.sol"; import {PoolFactory} from "./PoolFactory.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; contract Auction is Initializable, UUPSUpgradeable, PausableUpgradeable { using SafeERC20 for IERC20; // Pool contract address public pool; // Auction beneficiary address public beneficiary; // Auction buy and sell tokens address public buyCouponToken; address public sellReserveToken; // Auction end time and total buy amount uint256 public endTime; uint256 public totalBuyCouponAmount; uint256 public poolSaleLimit; // Pending refunds mapping(address => uint256) public pendingRefunds; // user => amount enum State { BIDDING, SUCCEEDED, FAILED_UNDERSOLD, FAILED_POOL_SALE_LIMIT } State public state; struct Bid { address bidder; uint256 buyReserveAmount; uint256 sellCouponAmount; uint256 nextBidIndex; uint256 prevBidIndex; bool claimed; } mapping(uint256 => Bid) public bids; // Mapping to store all bids by their index uint256 public bidCount; uint256 public lastBidIndex; uint256 public highestBidIndex; // The index of the highest bid in the sorted list uint256 public maxBids; uint256 public lowestBidIndex; // New variable to track the lowest bid uint256 public currentCouponAmount; // Aggregated buy amount (coupon) for the auction uint256 public totalSellReserveAmount; // Aggregated sell amount (reserve) for the auction event AuctionEnded(State state, uint256 totalSellReserveAmount, uint256 totalBuyCouponAmount); event FailedAuctionBidRefundClaimed(uint256 bidIndex, address indexed bidder, uint256 sellCouponAmount); event LosingBidRefundClaimed(address indexed bidder, uint256 sellCouponAmount); event BidClaimed(uint256 indexed bidIndex, address indexed bidder, uint256 sellCouponAmount); event BidPlaced(uint256 indexed bidIndex, address indexed bidder, uint256 buyReserveAmount, uint256 sellCouponAmount); event BidRemoved(uint256 indexed bidIndex, address indexed bidder, uint256 buyReserveAmount, uint256 sellCouponAmount); event BidReduced(uint256 indexed bidIndex, address indexed bidder, uint256 buyReserveAmount, uint256 sellCouponAmount); event BidRefundAllocated(address indexed bidder, uint256 couponAmount); error AccessDenied(); error AuctionFailed(); error NothingToClaim(); error AlreadyClaimed(); error AuctionHasEnded(); error AuctionNotEnded(); error BidAmountTooLow(); error BidAmountTooHigh(); error InvalidSellAmount(); error AuctionStillOngoing(); error AuctionAlreadyEnded(); uint256 public constant MAX_BID_AMOUNT = 1e50; /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the Auction contract. * @param _buyCouponToken The address of the buy token (coupon). * @param _sellReserveToken The address of the sell token (reserve). * @param _totalBuyCouponAmount The total amount of buy tokens (coupon) for the auction. * @param _endTime The end time of the auction. * @param _maxBids The maximum number of bids allowed in the auction. * @param _beneficiary The address of the auction beneficiary. * @param _poolSaleLimit The percentage threshold auctions should respect when selling reserves (e.g. 95 = 95%). */ function initialize( address _pool, address _buyCouponToken, address _sellReserveToken, uint256 _totalBuyCouponAmount, uint256 _endTime, uint256 _maxBids, address _beneficiary, uint256 _poolSaleLimit ) initializer public { __UUPSUpgradeable_init(); buyCouponToken = _buyCouponToken; // coupon sellReserveToken = _sellReserveToken; // reserve totalBuyCouponAmount = _totalBuyCouponAmount; // coupon amount endTime = _endTime; maxBids = _maxBids; pool = _pool; poolSaleLimit = _poolSaleLimit; if (_beneficiary == address(0)) { beneficiary = msg.sender; } else { beneficiary = _beneficiary; } } /** * @dev Places a bid on a portion of the pool. * @param buyReserveAmount The amount of buy tokens (reserve) to bid. * @param sellCouponAmount The amount of sell tokens (coupon) to bid. * @return The index of the bid. */ function bid(uint256 buyReserveAmount, uint256 sellCouponAmount) external auctionActive whenNotPaused returns(uint256) { if (sellCouponAmount == 0 || sellCouponAmount > totalBuyCouponAmount) revert InvalidSellAmount(); if (sellCouponAmount % slotSize() != 0) revert InvalidSellAmount(); if (buyReserveAmount == 0) revert BidAmountTooLow(); if (buyReserveAmount > MAX_BID_AMOUNT) revert BidAmountTooHigh(); // Transfer buy tokens to contract IERC20(buyCouponToken).safeTransferFrom(msg.sender, address(this), sellCouponAmount); Bid memory newBid = Bid({ bidder: msg.sender, buyReserveAmount: buyReserveAmount, sellCouponAmount: sellCouponAmount, nextBidIndex: 0, // Default to 0, which indicates the end of the list prevBidIndex: 0, // Default to 0, which indicates the start of the list claimed: false }); lastBidIndex++; // Avoids 0 index uint256 newBidIndex = lastBidIndex; bids[newBidIndex] = newBid; bidCount++; // Insert the new bid into the sorted linked list insertSortedBid(newBidIndex); currentCouponAmount += sellCouponAmount; totalSellReserveAmount += buyReserveAmount; if (bidCount > maxBids) { if (lowestBidIndex == newBidIndex) { revert BidAmountTooLow(); } _removeBid(lowestBidIndex); } // Remove and refund out of range bids removeExcessBids(); // Check if the new bid is still on the map after removeBids if (bids[newBidIndex].bidder == address(0)) { revert BidAmountTooLow(); } emit BidPlaced(newBidIndex,msg.sender, buyReserveAmount, sellCouponAmount); return newBidIndex; } /** * @dev Inserts the bid into the linked list based on the price (buyAmount/sellAmount) in descending order, then by sellAmount. * @param newBidIndex The index of the bid to insert. */ function insertSortedBid(uint256 newBidIndex) internal { Bid storage newBid = bids[newBidIndex]; uint256 newSellCouponAmount = newBid.sellCouponAmount; uint256 newBuyReserveAmount = newBid.buyReserveAmount; uint256 leftSide; uint256 rightSide; if (highestBidIndex == 0) { // First bid being inserted highestBidIndex = newBidIndex; lowestBidIndex = newBidIndex; } else { uint256 currentBidIndex = highestBidIndex; uint256 previousBidIndex = 0; // Traverse the linked list to find the correct spot for the new bid while (currentBidIndex != 0) { // Cache the current bid's data into local variables Bid storage currentBid = bids[currentBidIndex]; uint256 currentSellCouponAmount = currentBid.sellCouponAmount; uint256 currentBuyReserveAmount = currentBid.buyReserveAmount; uint256 currentNextBidIndex = currentBid.nextBidIndex; // Compare prices without division by cross-multiplying (it's more gas efficient) leftSide = newSellCouponAmount * currentBuyReserveAmount; rightSide = currentSellCouponAmount * newBuyReserveAmount; if (leftSide > rightSide || (leftSide == rightSide && newSellCouponAmount > currentSellCouponAmount)) { break; } previousBidIndex = currentBidIndex; currentBidIndex = currentNextBidIndex; } if (previousBidIndex == 0) { // New bid is the highest bid newBid.nextBidIndex = highestBidIndex; bids[highestBidIndex].prevBidIndex = newBidIndex; highestBidIndex = newBidIndex; } else { // Insert bid in the middle or at the end newBid.nextBidIndex = currentBidIndex; newBid.prevBidIndex = previousBidIndex; bids[previousBidIndex].nextBidIndex = newBidIndex; if (currentBidIndex != 0) { bids[currentBidIndex].prevBidIndex = newBidIndex; } } // If the new bid is inserted at the end, update the lowest bid index if (currentBidIndex == 0) { lowestBidIndex = newBidIndex; } } // Cache the lowest bid's data into local variables Bid storage lowestBid = bids[lowestBidIndex]; uint256 lowestSellCouponAmount = lowestBid.sellCouponAmount; uint256 lowestBuyReserveAmount = lowestBid.buyReserveAmount; // Compare prices without division by cross-multiplying (it's more gas efficient) leftSide = newSellCouponAmount * lowestBuyReserveAmount; rightSide = lowestSellCouponAmount * newBuyReserveAmount; if (leftSide < rightSide || (leftSide == rightSide && newSellCouponAmount < lowestSellCouponAmount)) { lowestBidIndex = newBidIndex; } } /** * @dev Removes excess bids from the auction. */ function removeExcessBids() internal { if (currentCouponAmount <= totalBuyCouponAmount) { return; } uint256 amountToRemove = currentCouponAmount - totalBuyCouponAmount; uint256 currentIndex = lowestBidIndex; while (currentIndex != 0 && amountToRemove != 0) { // Cache the current bid's data into local variables Bid storage currentBid = bids[currentIndex]; uint256 sellCouponAmount = currentBid.sellCouponAmount; uint256 prevIndex = currentBid.prevBidIndex; if (amountToRemove >= sellCouponAmount) { // Subtract the sellAmount from amountToRemove amountToRemove -= sellCouponAmount; // Remove the bid _removeBid(currentIndex); // Move to the previous bid (higher price) currentIndex = prevIndex; } else { // Calculate the proportion of sellAmount being removed uint256 proportion = (amountToRemove * 1e18) / sellCouponAmount; // Reduce the current bid's amounts currentBid.sellCouponAmount = sellCouponAmount - amountToRemove; currentCouponAmount -= amountToRemove; uint256 reserveReduction = ((currentBid.buyReserveAmount * proportion) / 1e18); currentBid.buyReserveAmount = currentBid.buyReserveAmount - reserveReduction; totalSellReserveAmount -= reserveReduction; // Refund the proportional sellAmount pendingRefunds[currentBid.bidder] += amountToRemove; amountToRemove = 0; emit BidRefundAllocated(currentBid.bidder, amountToRemove); emit BidReduced(currentIndex, currentBid.bidder, currentBid.buyReserveAmount, currentBid.sellCouponAmount); } } } /** * @dev Removes a bid from the linked list. * @param bidIndex The index of the bid to remove. */ function _removeBid(uint256 bidIndex) internal { Bid storage bidToRemove = bids[bidIndex]; uint256 nextIndex = bidToRemove.nextBidIndex; uint256 prevIndex = bidToRemove.prevBidIndex; // Update linked list pointers if (prevIndex == 0) { // Removing the highest bid highestBidIndex = nextIndex; } else { bids[prevIndex].nextBidIndex = nextIndex; } if (nextIndex == 0) { // Removing the lowest bid lowestBidIndex = prevIndex; } else { bids[nextIndex].prevBidIndex = prevIndex; } address bidder = bidToRemove.bidder; uint256 buyReserveAmount = bidToRemove.buyReserveAmount; uint256 sellCouponAmount = bidToRemove.sellCouponAmount; currentCouponAmount -= sellCouponAmount; totalSellReserveAmount -= buyReserveAmount; // Refund the buy tokens for the removed bid pendingRefunds[bidder] += sellCouponAmount; emit BidRefundAllocated(bidder, sellCouponAmount); emit BidRemoved(bidIndex, bidder, buyReserveAmount, sellCouponAmount); delete bids[bidIndex]; bidCount--; } /** * @dev Ends the auction and transfers the reserve to the auction. */ function endAuction() external auctionExpired whenNotPaused { if (state != State.BIDDING) revert AuctionAlreadyEnded(); if (currentCouponAmount < totalBuyCouponAmount) { state = State.FAILED_UNDERSOLD; Pool(pool).zeroLastSharesPerToken(); } else if (totalSellReserveAmount >= (IERC20(sellReserveToken).balanceOf(pool) * poolSaleLimit) / 100) { state = State.FAILED_POOL_SALE_LIMIT; Pool(pool).zeroLastSharesPerToken(); } else { state = State.SUCCEEDED; Pool(pool).transferReserveToAuction(totalSellReserveAmount); IERC20(buyCouponToken).safeTransfer(beneficiary, IERC20(buyCouponToken).balanceOf(address(this))); } emit AuctionEnded(state, totalSellReserveAmount, totalBuyCouponAmount); } /** * @dev Claims the tokens for a winning bid. * @param bidIndex The index of the bid to claim. */ function claimBid(uint256 bidIndex) auctionExpired auctionSucceeded whenNotPaused external { Bid storage bidInfo = bids[bidIndex]; if (bidInfo.bidder != msg.sender) revert NothingToClaim(); if (bidInfo.claimed) revert AlreadyClaimed(); bidInfo.claimed = true; IERC20(sellReserveToken).transfer(bidInfo.bidder, bidInfo.buyReserveAmount); emit BidClaimed(bidIndex, bidInfo.bidder, bidInfo.buyReserveAmount); } function claimRefund(uint256 bidIndex) auctionExpired auctionFailed whenNotPaused external { Bid storage bidInfo = bids[bidIndex]; if (bidInfo.bidder != msg.sender) revert NothingToClaim(); if (bidInfo.claimed) revert AlreadyClaimed(); bidInfo.claimed = true; IERC20(buyCouponToken).safeTransfer(bidInfo.bidder, bidInfo.sellCouponAmount); emit FailedAuctionBidRefundClaimed(bidIndex, bidInfo.bidder, bidInfo.sellCouponAmount); } function claimRefund() whenNotPaused external { uint256 amountToClaim = pendingRefunds[msg.sender]; if (amountToClaim == 0) revert NothingToClaim(); pendingRefunds[msg.sender] = 0; IERC20(buyCouponToken).safeTransfer(msg.sender, amountToClaim); emit LosingBidRefundClaimed(msg.sender, amountToClaim); } /** * @dev Returns the size of a bid slot. * @return uint256 The size of a bid slot. */ function slotSize() public view returns (uint256) { // Rounds up to the nearest slot size that covers the totalBuyCouponAmount return (totalBuyCouponAmount + maxBids - 1) / maxBids; } /** * @dev Modifier to check if the auction is still active. */ modifier auctionActive() { if (block.timestamp >= endTime) revert AuctionHasEnded(); _; } /** * @dev Modifier to check if the auction has expired. */ modifier auctionExpired() { if (block.timestamp < endTime) revert AuctionStillOngoing(); _; } /** * @dev Modifier to check if the auction succeeded. */ modifier auctionSucceeded() { if (state != State.SUCCEEDED) revert AuctionFailed(); _; } modifier auctionFailed() { if (state == State.SUCCEEDED || state == State.BIDDING) revert AuctionFailed(); _; } /** * @dev Modifier to check if the caller has the specified role. * @param role The role to check for. */ modifier onlyRole(bytes32 role) { if (!PoolFactory(Pool(pool).poolFactory()).hasRole(role, msg.sender)) { revert AccessDenied(); } _; } function pause() external onlyRole(PoolFactory(Pool(pool).poolFactory()).SECURITY_COUNCIL_ROLE()) { _pause(); } function unpause() external onlyRole(PoolFactory(Pool(pool).poolFactory()).SECURITY_COUNCIL_ROLE()) { _unpause(); } /** * @dev Authorizes an upgrade to a new implementation. * Can only be called by the owner of the contract. * @param newImplementation Address of the new implementation */ function _authorizeUpgrade(address newImplementation) internal onlyRole(PoolFactory(Pool(pool).poolFactory()).GOV_ROLE()) override {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Decimals} from "./lib/Decimals.sol"; import {PoolFactory} from "./PoolFactory.sol"; import {Pool} from "./Pool.sol"; import {Auction} from "./Auction.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import {ERC20PermitUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol"; /** * @title BondToken * @dev This contract implements a bond token with upgradeable capabilities, access control, and pausability. * It includes functionality for managing indexed user assets and global asset pools. */ contract BondToken is Initializable, ERC20Upgradeable, AccessControlUpgradeable, ERC20PermitUpgradeable, UUPSUpgradeable, PausableUpgradeable { using Decimals for uint256; /** * @dev Struct to represent a pool's outstanding shares and shares per bond at a specific period * @param period The period of the pool amount * @param amount The total amount in the pool * @param sharesPerToken The number of shares per token (base 10000) */ struct PoolAmount { uint256 period; uint256 amount; uint256 sharesPerToken; } /** * @dev Struct to represent the global asset pool, including the current period, shares per token, and previous pool amounts. * @param currentPeriod The current period of the global pool * @param sharesPerToken The current number of shares per token (base 1e6) * @param previousPoolAmounts An array of previous pool amounts */ struct IndexedGlobalAssetPool { uint256 currentPeriod; uint256 sharesPerToken; PoolAmount[] previousPoolAmounts; } /** * @dev Struct to represent a user's indexed assets, which are the user's shares * @param lastUpdatedPeriod The last period when the user's assets were updated * @param indexedAmountShares The user's indexed amount of shares */ struct IndexedUserAssets { uint256 lastUpdatedPeriod; uint256 indexedAmountShares; } /// @dev The global asset pool IndexedGlobalAssetPool public globalPool; /// @dev Pool factory address PoolFactory public poolFactory; Pool public pool; /// @dev Mapping of user addresses to their indexed assets mapping(address => IndexedUserAssets) public userAssets; /// @dev Role identifier for accounts with minting privileges bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE"); /// @dev Role identifier for accounts with governance privileges bytes32 public constant GOV_ROLE = keccak256("GOV_ROLE"); /// @dev Role identifier for the distributor bytes32 public constant DISTRIBUTOR_ROLE = keccak256("DISTRIBUTOR_ROLE"); /// @dev The number of decimals for shares uint8 public constant SHARES_DECIMALS = 6; /// @dev Error thrown when the caller is not the security council error CallerIsNotSecurityCouncil(); /// @dev Error thrown when the caller is not the pool factory error CallerIsNotPoolFactory(); /// @dev Emitted when the asset period is increased event IncreasedAssetPeriod(uint256 currentPeriod, uint256 sharesPerToken); /// @dev Emitted when a user's assets are updated event UpdatedUserAssets(address user, uint256 lastUpdatedPeriod, uint256 indexedAmountShares); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the contract with a name, symbol, minter, governance address, distributor, and initial shares per token. * @param name The name of the token * @param symbol The symbol of the token * @param minter The address that will have minting privileges * @param governance The address that will have governance privileges * @param sharesPerToken The initial number of shares per token */ function initialize( string memory name, string memory symbol, address minter, address governance, address _poolFactory, uint256 sharesPerToken ) initializer public { __ERC20_init(name, symbol); __ERC20Permit_init(name); __UUPSUpgradeable_init(); __Pausable_init(); poolFactory = PoolFactory(_poolFactory); globalPool.sharesPerToken = sharesPerToken; _grantRole(MINTER_ROLE, minter); _grantRole(GOV_ROLE, governance); _setRoleAdmin(GOV_ROLE, GOV_ROLE); _setRoleAdmin(DISTRIBUTOR_ROLE, GOV_ROLE); _setRoleAdmin(MINTER_ROLE, MINTER_ROLE); } /** * @dev Mints new tokens to the specified address. * @param to The address that will receive the minted tokens * @param amount The amount of tokens to mint * @notice Can only be called by addresses with the MINTER_ROLE. */ function mint(address to, uint256 amount) public onlyRole(MINTER_ROLE) { _mint(to, amount); } /** * @dev Burns tokens from the specified account. * @param account The account from which tokens will be burned * @param amount The amount of tokens to burn * @notice Can only be called by addresses with the MINTER_ROLE. */ function burn(address account, uint256 amount) public onlyRole(MINTER_ROLE) { _burn(account, amount); } /** * @dev Returns the previous pool amounts from the global pool. * @return An array of PoolAmount structs representing the previous pool amounts */ function getPreviousPoolAmounts() external view returns (PoolAmount[] memory) { return globalPool.previousPoolAmounts; } /** * @dev Internal function to update user assets after a transfer. * @param from The address tokens are transferred from * @param to The address tokens are transferred to * @param amount The amount of tokens transferred * @notice This function is called during token transfer and is paused when the contract is paused. */ function _update(address from, address to, uint256 amount) internal virtual override whenNotPaused() { if (from != address(0)) { updateIndexedUserAssets(from, balanceOf(from)); } if (to != address(0)) { updateIndexedUserAssets(to, balanceOf(to)); } super._update(from, to, amount); } /** * @dev Updates the indexed user assets for a specific user. * @param user The address of the user * @param balance The current balance of the user * @notice This function updates the number of shares held by the user based on the current period. */ function updateIndexedUserAssets(address user, uint256 balance) internal { uint256 currentPeriod = globalPool.currentPeriod; uint256 shares = getIndexedUserAmount(user, balance, currentPeriod); userAssets[user].indexedAmountShares = shares; userAssets[user].lastUpdatedPeriod = currentPeriod; emit UpdatedUserAssets(user, currentPeriod, shares); } /** * @dev Returns the indexed amount of shares for a specific user. * @param user The address of the user * @param balance The current balance of the user * @return The indexed amount of shares for the user * @notice This function calculates the number of shares based on the current period and the previous pool amounts. */ function getIndexedUserAmount(address user, uint256 balance, uint256 currentPeriod) public view returns(uint256) { IndexedUserAssets memory userPool = userAssets[user]; uint256 shares = userPool.indexedAmountShares; // Loop through all periods except current for (uint256 i = userPool.lastUpdatedPeriod; i < currentPeriod; i++) { if (currentPeriod > 0 && i == currentPeriod-1) { // Exception for last period, where we only count if auction was successful if (Auction(pool.auctions(currentPeriod-1)).state() == Auction.State.SUCCEEDED) { shares += (balance * globalPool.previousPoolAmounts[currentPeriod-1].sharesPerToken).toBaseUnit(SHARES_DECIMALS); continue; } } shares += (balance * globalPool.previousPoolAmounts[i].sharesPerToken).toBaseUnit(SHARES_DECIMALS); } return shares; } /** * @dev Resets the indexed user assets for a specific user. * @param user The address of the user * @notice This function resets the last updated period and indexed amount of shares to zero. * Can only be called by addresses with the DISTRIBUTOR_ROLE and when the contract is not paused. */ function resetIndexedUserAssets(address user) external onlyRole(DISTRIBUTOR_ROLE) whenNotPaused(){ userAssets[user].lastUpdatedPeriod = globalPool.currentPeriod; userAssets[user].indexedAmountShares = 0; } /** * @dev Increases the current period and updates the shares per token. * @param sharesPerToken The new number of shares per token * @notice Can only be called by addresses with the GOV_ROLE and when the contract is not paused. */ function increaseIndexedAssetPeriod(uint256 sharesPerToken) public onlyRole(DISTRIBUTOR_ROLE) whenNotPaused() { globalPool.previousPoolAmounts.push( PoolAmount({ period: globalPool.currentPeriod, amount: totalSupply(), sharesPerToken: sharesPerToken }) ); globalPool.currentPeriod++; globalPool.sharesPerToken = sharesPerToken; emit IncreasedAssetPeriod(globalPool.currentPeriod, sharesPerToken); } /** * @dev Sets the shares per token for the last period to 0. Only called by the Pool when the auction fails. * @notice Can only be called by addresses with the DISTRIBUTOR_ROLE and when the contract is not paused. */ function zeroLastSharesPerToken() external onlyRole(DISTRIBUTOR_ROLE) { globalPool.previousPoolAmounts[globalPool.currentPeriod-1].sharesPerToken = 0; } /** * @dev Sets the pool for the bond token. Only called by the pool factory, and only once during Pool creation. * @param _pool The address of the pool */ function setPool(address _pool) external { require(msg.sender == address(poolFactory), CallerIsNotPoolFactory()); pool = Pool(_pool); } /** * @dev Pauses all contract functions except for upgrades. * Requirements: * - the caller must have the `SECURITY_COUNCIL_ROLE` from the pool factory. */ function pause() external onlySecurityCouncil() { _pause(); } /** * @dev Unpauses all contract functions. * Requirements: * - the caller must have the `SECURITY_COUNCIL_ROLE`. */ function unpause() external onlySecurityCouncil() { _unpause(); } modifier onlySecurityCouncil() { if (!poolFactory.hasRole(poolFactory.SECURITY_COUNCIL_ROLE(), msg.sender)) { revert CallerIsNotSecurityCouncil(); } _; } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * @param newImplementation Address of the new implementation contract * @notice Can only be called by addresses with the GOV_ROLE. */ function _authorizeUpgrade(address newImplementation) internal onlyRole(GOV_ROLE) override {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; library Decimals { /** * @dev Converts a token amount to its base unit representation. * @param amount The token amount. * @param decimals The number of decimals the token uses. * @return The base unit representation of the token amount. */ function toBaseUnit(uint256 amount, uint8 decimals) internal pure returns (uint256) { return amount / (10 ** decimals); } /** * @dev Converts a base unit representation to a token amount. * @param baseUnitAmount The base unit representation of the token amount. * @param decimals The number of decimals the token uses. * @return The token amount. */ function fromBaseUnit(uint256 baseUnitAmount, uint8 decimals) internal pure returns (uint256) { return baseUnitAmount * (10 ** decimals); } /** * @dev Normalizes a token amount to a common decimal base. * @param amount The token amount. * @param fromDecimals The number of decimals the token uses. * @param toDecimals The target number of decimals. * @return The normalized token amount. */ function normalizeAmount(uint256 amount, uint8 fromDecimals, uint8 toDecimals) internal pure returns (uint256) { if (fromDecimals > toDecimals) { return amount / (10 ** (fromDecimals - toDecimals)); } else if (fromDecimals < toDecimals) { return amount * (10 ** (toDecimals - fromDecimals)); } else { return amount; } } /** * @dev Normalizes a token amount to a specified decimal base. * @param token The ERC20 token. * @param amount The token amount to normalize. * @param toDecimals The target number of decimals. * @return The normalized token amount. */ function normalizeTokenAmount(uint256 amount, address token, uint8 toDecimals) internal view returns (uint256) { uint8 decimals = IERC20Metadata(token).decimals(); return normalizeAmount(amount, decimals, toDecimals); } /** * @dev Adds two token amounts with different decimals. * @param amount1 The first token amount. * @param decimals1 The number of decimals for the first token. * @param amount2 The second token amount. * @param decimals2 The number of decimals for the second token. * @param resultDecimals The number of decimals for the result. * @return The sum of the two token amounts normalized to the result decimals. */ function addAmounts(uint256 amount1, uint8 decimals1, uint256 amount2, uint8 decimals2, uint8 resultDecimals) internal pure returns (uint256) { uint256 normalizedAmount1 = normalizeAmount(amount1, decimals1, resultDecimals); uint256 normalizedAmount2 = normalizeAmount(amount2, decimals2, resultDecimals); return normalizedAmount1 + normalizedAmount2; } /** * @dev Subtracts two token amounts with different decimals. * @param amount1 The first token amount. * @param decimals1 The number of decimals for the first token. * @param amount2 The second token amount. * @param decimals2 The number of decimals for the second token. * @param resultDecimals The number of decimals for the result. * @return The difference of the two token amounts normalized to the result decimals. */ function subtractAmounts(uint256 amount1, uint8 decimals1, uint256 amount2, uint8 decimals2, uint8 resultDecimals) internal pure returns (uint256) { uint256 normalizedAmount1 = normalizeAmount(amount1, decimals1, resultDecimals); uint256 normalizedAmount2 = normalizeAmount(amount2, decimals2, resultDecimals); return normalizedAmount1 - normalizedAmount2; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import "@openzeppelin/contracts/access/AccessControl.sol"; contract OracleFeeds is AccessControl { bytes32 public constant GOV_ROLE = keccak256("GOV_ROLE"); // Mapping of token pairs to their price feed addresses mapping(address => mapping(address => address)) public priceFeeds; mapping(address => uint256) public feedHeartbeats; constructor() { _grantRole(GOV_ROLE, msg.sender); } /** * @dev Sets the price feed for a given token pair * @param tokenA Address of the first token * @param tokenB Address of the second token * @param priceFeed Address of the price feed oracle * Note: address(0) is a special address that represents USD (IRL asset) */ function setPriceFeed(address tokenA, address tokenB, address priceFeed, uint256 heartbeat) external onlyRole(GOV_ROLE) { priceFeeds[tokenA][tokenB] = priceFeed; if (heartbeat == 0) { heartbeat = 1 days; } feedHeartbeats[priceFeed] = heartbeat; } /** * @dev Grants `role` to `account`. * If `account` had not been already granted `role`, emits a {RoleGranted} event. * @param role The role to grant * @param account The account to grant the role to */ function grantRole(bytes32 role, address account) public virtual override onlyRole(GOV_ROLE) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * If `account` had been granted `role`, emits a {RoleRevoked} event. * @param role The role to revoke * @param account The account to revoke the role from */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(GOV_ROLE) { _revokeRole(role, account); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Pool} from "./Pool.sol"; import {BondToken} from "./BondToken.sol"; import {Decimals} from "./lib/Decimals.sol"; import {PoolFactory} from "../src/PoolFactory.sol"; import {ERC20Extensions} from "./lib/ERC20Extensions.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; /** * @title Distributor * @dev This contract manages the distribution of coupon shares to users based on their bond token balances. */ contract Distributor is Initializable, PausableUpgradeable, ReentrancyGuardUpgradeable { using SafeERC20 for IERC20; using ERC20Extensions for IERC20; using Decimals for uint256; /// @dev Pool factory address PoolFactory public poolFactory; /// @dev Pool address Pool public pool; /// @dev Coupon token total amount to be distributed uint256 public couponAmountToDistribute; /// @dev Error thrown when there are not enough shares in the contract's balance error NotEnoughSharesBalance(); /// @dev Error thrown when an unsupported pool is accessed error UnsupportedPool(); /// @dev Error thrown when there are not enough shares allocated to distribute error NotEnoughSharesToDistribute(); /// @dev Error thrown when there are not enough coupon tokens in the contract's balance error NotEnoughCouponBalance(); /// @dev Error thrown when attempting to register an already registered pool error PoolAlreadyRegistered(); /// @dev Error thrown when the pool has an invalid address error InvalidPoolAddress(); /// @dev error thrown when the caller is not the pool error CallerIsNotPool(); /// @dev error thrown when the caller does not have the required role error AccessDenied(); /// @dev error thrown when user has no shares to claim error NothingToClaim(); /// @dev Event emitted when a user claims their shares event ClaimedShares(address user, uint256 period, uint256 shares); /// @dev Event emitted when a new pool is registered event PoolRegistered(address pool, address couponToken); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the contract with the pool address and pool factory address. * This function is called once during deployment or upgrading to initialize state variables. * @param _pool Address of the pool. * @param _poolFactory Address of the pool factory. */ function initialize(address _pool, address _poolFactory) initializer public { __ReentrancyGuard_init(); __Pausable_init(); pool = Pool(_pool); poolFactory = PoolFactory(_poolFactory); } /** * @dev Allows a user to claim their shares from a specific pool. * Calculates the number of shares based on the user's bond token balance and the shares per token. * Transfers the calculated shares to the user's address. */ function claim() external whenNotPaused nonReentrant { BondToken bondToken = Pool(pool).bondToken(); address couponToken = Pool(pool).couponToken(); if (address(bondToken) == address(0) || couponToken == address(0)){ revert UnsupportedPool(); } (uint256 currentPeriod,) = bondToken.globalPool(); uint256 balance = bondToken.balanceOf(msg.sender); uint256 shares = bondToken.getIndexedUserAmount(msg.sender, balance, currentPeriod) .normalizeAmount(bondToken.decimals(), IERC20(couponToken).safeDecimals()); if (shares == 0) { revert NothingToClaim(); } if (IERC20(couponToken).balanceOf(address(this)) < shares) { revert NotEnoughSharesBalance(); } // check if pool has enough *allocated* shares to distribute if (couponAmountToDistribute < shares) { revert NotEnoughSharesToDistribute(); } // check if the distributor has enough shares tokens as the amount to distribute if (IERC20(couponToken).balanceOf(address(this)) < couponAmountToDistribute) { revert NotEnoughSharesToDistribute(); } couponAmountToDistribute -= shares; bondToken.resetIndexedUserAssets(msg.sender); IERC20(couponToken).safeTransfer(msg.sender, shares); emit ClaimedShares(msg.sender, currentPeriod, shares); } /** * @dev Allocates shares to a pool. * @param _amountToDistribute Amount of shares to allocate. */ function allocate(uint256 _amountToDistribute) external whenNotPaused { require(address(pool) == msg.sender, CallerIsNotPool()); address couponToken = pool.couponToken(); couponAmountToDistribute += _amountToDistribute; if (IERC20(couponToken).balanceOf(address(this)) < couponAmountToDistribute) { revert NotEnoughCouponBalance(); } } /** * @dev Pauses the contract. Reverts any interaction except upgrade. */ function pause() external onlyRole(poolFactory.SECURITY_COUNCIL_ROLE()) { _pause(); } /** * @dev Unpauses the contract. */ function unpause() external onlyRole(poolFactory.SECURITY_COUNCIL_ROLE()) { _unpause(); } /** * @dev Modifier to check if the caller has the specified role. * @param role The role to check for. */ modifier onlyRole(bytes32 role) { if (!poolFactory.hasRole(role, msg.sender)) { revert AccessDenied(); } _; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Pool} from "./Pool.sol"; import {BondToken} from "./BondToken.sol"; import {Distributor} from "./Distributor.sol"; import {LeverageToken} from "./LeverageToken.sol"; import {Create3} from "@create3/contracts/Create3.sol"; import {Deployer} from "./utils/Deployer.sol"; import {ERC20Extensions} from "./lib/ERC20Extensions.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {BeaconProxy} from "@openzeppelin/contracts/proxy/beacon/BeaconProxy.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; /** * @title PoolFactory * @dev This contract is responsible for creating and managing pools. * It inherits from various OpenZeppelin upgradeable contracts for enhanced functionality and security. */ contract PoolFactory is Initializable, AccessControlUpgradeable, UUPSUpgradeable, PausableUpgradeable { using SafeERC20 for IERC20; using ERC20Extensions for IERC20; bytes32 public constant GOV_ROLE = keccak256("GOV_ROLE"); bytes32 public constant POOL_ROLE = keccak256("POOL_ROLE"); bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE"); bytes32 public constant SECURITY_COUNCIL_ROLE = keccak256("SECURITY_COUNCIL_ROLE"); struct PoolParams { uint256 fee; address reserveToken; address couponToken; uint256 distributionPeriod; uint256 sharesPerToken; address feeBeneficiary; } /// @dev Array to store addresses of created pools address[] public pools; /// @dev Address of the governance contract address public governance; /// @dev Address of the OracleFeeds contract address public oracleFeeds; /// @dev Instance of the Deployer contract Deployer public deployer; /// @dev Address of the UpgradeableBeacon for Pool address public poolBeacon; /// @dev Address of the UpgradeableBeacon for BondToken address public bondBeacon; /// @dev Address of the UpgradeableBeacon for LeverageToken address public leverageBeacon; /// @dev Address of the UpgradeableBeacon for Distributor address public distributorBeacon; /// @dev Mapping to store distributor addresses for each pool mapping(address => address) public distributors; /// @dev Error thrown when bond amount is zero error ZeroDebtAmount(); /// @dev Error thrown when reserve amount is zero error ZeroReserveAmount(); /// @dev Error thrown when leverage amount is zero error ZeroLeverageAmount(); /** * @dev Emitted when a new pool is created * @param pool Address of the newly created pool * @param reserveAmount Amount of reserve tokens * @param bondAmount Amount of bond tokens * @param leverageAmount Amount of leverage tokens */ event PoolCreated(address pool, uint256 reserveAmount, uint256 bondAmount, uint256 leverageAmount); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the contract with the governance address and sets up roles. * This function is called once during deployment or upgrading to initialize state variables. * @param _governance Address of the governance account that will have the GOV_ROLE. * @param _deployer Address of the Deployer contract. * @param _oracleFeeds Address of the OracleFeeds contract. * @param _poolImplementation Address of the Pool implementation contract. * @param _bondImplementation Address of the BondToken implementation contract. * @param _leverageImplementation Address of the LeverageToken implementation contract. * @param _distributorImplementation Address of the Distributor implementation contract. */ function initialize( address _governance, address _deployer, address _oracleFeeds, address _poolImplementation, address _bondImplementation, address _leverageImplementation, address _distributorImplementation ) initializer public { __UUPSUpgradeable_init(); __Pausable_init(); deployer = Deployer(_deployer); governance = _governance; oracleFeeds = _oracleFeeds; _grantRole(GOV_ROLE, _governance); // Stores beacon implementation addresses poolBeacon = _poolImplementation; bondBeacon = _bondImplementation; leverageBeacon = _leverageImplementation; distributorBeacon = _distributorImplementation; } /** * @dev Creates a new pool with the given parameters * @param params Struct containing pool parameters * @param reserveAmount Amount of reserve tokens to seed the pool * @param bondAmount Amount of bond tokens to mint * @param leverageAmount Amount of leverage tokens to mint * @return Address of the newly created pool */ function createPool( PoolParams calldata params, uint256 reserveAmount, uint256 bondAmount, uint256 leverageAmount, string memory bondName, string memory bondSymbol, string memory leverageName, string memory leverageSymbol, bool pauseOnCreation ) external whenNotPaused() onlyRole(POOL_ROLE) returns (address) { if (reserveAmount == 0) { revert ZeroReserveAmount(); } if (bondAmount == 0) { revert ZeroDebtAmount(); } if (leverageAmount == 0) { revert ZeroLeverageAmount(); } // Deploy Bond token BondToken bondToken = BondToken(deployer.deployBondToken( bondBeacon, bondName, bondSymbol, address(this), address(this), address(this), params.sharesPerToken )); // Deploy Leverage token LeverageToken lToken = LeverageToken(deployer.deployLeverageToken( leverageBeacon, leverageName, leverageSymbol, address(this), address(this), address(this) )); // Deploy pool contract as a BeaconProxy bytes memory initData = abi.encodeCall( Pool.initialize, ( address(this), params.fee, params.reserveToken, address(bondToken), address(lToken), params.couponToken, params.sharesPerToken, params.distributionPeriod, params.feeBeneficiary, oracleFeeds, pauseOnCreation ) ); address pool = Create3.create3( keccak256( abi.encodePacked( params.reserveToken, params.couponToken, bondToken.symbol(), lToken.symbol() ) ), abi.encodePacked( type(BeaconProxy).creationCode, abi.encode(poolBeacon, initData) ) ); BondToken(bondToken).setPool(pool); // Deploy Distributor contract Distributor distributor = Distributor(deployer.deployDistributor( distributorBeacon, pool, address(this) )); distributors[pool] = address(distributor); bondToken.grantRole(MINTER_ROLE, pool); lToken.grantRole(MINTER_ROLE, pool); bondToken.grantRole(bondToken.DISTRIBUTOR_ROLE(), pool); bondToken.grantRole(bondToken.DISTRIBUTOR_ROLE(), address(distributor)); // set token governance bondToken.grantRole(GOV_ROLE, governance); lToken.grantRole(GOV_ROLE, governance); // renounce governance from factory bondToken.revokeRole(GOV_ROLE, address(this)); lToken.revokeRole(GOV_ROLE, address(this)); pools.push(pool); emit PoolCreated(pool, reserveAmount, bondAmount, leverageAmount); // Send seed reserves to pool IERC20(params.reserveToken).safeTransferFrom(msg.sender, pool, reserveAmount); // Mint seed amounts bondToken.mint(msg.sender, bondAmount); lToken.mint(msg.sender, leverageAmount); // Revoke minter role from factory bondToken.revokeRole(MINTER_ROLE, address(this)); lToken.revokeRole(MINTER_ROLE, address(this)); return pool; } /** * @dev Returns the number of pools created. * @return The length of the pools array. */ function poolsLength() external view returns (uint256) { return pools.length; } /** * @dev Sets the deployer address. * @param _deployer The address of the deployer. */ function setDeployer(address _deployer) external onlyRole(GOV_ROLE) { deployer = Deployer(_deployer); } /** * @dev Grants `role` to `account`. * If `account` had not been already granted `role`, emits a {RoleGranted} event. * @param role The role to grant * @param account The account to grant the role to */ function grantRole(bytes32 role, address account) public virtual override onlyRole(GOV_ROLE) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * If `account` had been granted `role`, emits a {RoleRevoked} event. * @param role The role to revoke * @param account The account to revoke the role from */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(GOV_ROLE) { _revokeRole(role, account); } /** * @dev Pauses contract. Reverts any interaction except upgrade. */ function pause() external onlyRole(SECURITY_COUNCIL_ROLE) { _pause(); } /** * @dev Unpauses contract. */ function unpause() external onlyRole(SECURITY_COUNCIL_ROLE) { _unpause(); } /** * @dev Authorizes an upgrade to a new implementation. * Can only be called by the owner of the contract. * @param newImplementation Address of the new implementation */ function _authorizeUpgrade(address newImplementation) internal onlyRole(GOV_ROLE) override {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Utils} from "../lib/Utils.sol"; import {Auction} from "../Auction.sol"; import {BondToken} from "../BondToken.sol"; import {Distributor} from "../Distributor.sol"; import {LeverageToken} from "../LeverageToken.sol"; import {BeaconProxy} from "@openzeppelin/contracts/proxy/beacon/BeaconProxy.sol"; /** * @title Deployer * @dev Contract for deploying BondToken and LeverageToken instances */ contract Deployer { /** * @dev Deploys a new BondToken contract * @param bondBeacon The address of the beacon for the BondToken * @param minter The address with minting privileges * @param governance The address with governance privileges * @param sharesPerToken The initial number of shares per token * @return address of the deployed BondToken contract */ function deployBondToken( address bondBeacon, string memory name, string memory symbol, address minter, address governance, address poolFactory, uint256 sharesPerToken ) external returns(address) { return address(new BeaconProxy( address(bondBeacon), abi.encodeCall( BondToken.initialize, (name, symbol, minter, governance, poolFactory, sharesPerToken) ) )); } /** * @dev Deploys a new LeverageToken contract * @param minter The address with minting privileges * @param governance The address with governance privileges * @return address of the deployed LeverageToken contract */ function deployLeverageToken( address leverageBeacon, string memory name, string memory symbol, address minter, address governance, address poolFactory ) external returns(address) { return address(new BeaconProxy( address(leverageBeacon), abi.encodeCall( LeverageToken.initialize, (name, symbol, minter, governance, poolFactory) ) )); } /** * @dev Deploys a new Distributor contract * @param pool The address of the pool * @return address of the deployed Distributor contract */ function deployDistributor( address distributorBeacon, address pool, address poolFactory ) external returns(address) { return address(new BeaconProxy( address(distributorBeacon), abi.encodeCall( Distributor.initialize, (pool, poolFactory) ) )); } /** * @dev Deploys a new Auction contract * @param pool The address of the pool * @param couponToken The address of the coupon token * @param reserveToken The address of the reserve token * @param couponAmountToDistribute The amount of coupon tokens to distribute * @param endTime The end time of the auction * @param maxBids The maximum number of bids * @param beneficiary The address of the beneficiary * @param poolSaleLimit The sale limit of the pool * @return address of the deployed Auction contract */ function deployAuction( address pool, address couponToken, address reserveToken, uint256 couponAmountToDistribute, uint256 endTime, uint256 maxBids, address beneficiary, uint256 poolSaleLimit ) external returns(address) { return Utils.deploy( address(new Auction()), abi.encodeWithSelector( Auction.initialize.selector, pool, couponToken, reserveToken, couponAmountToDistribute, endTime, maxBids, beneficiary, poolSaleLimit ) ); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; import './BlockTimestamp.sol'; /** * @title Validator * @dev Abstract contract that provides a modifier to check transaction deadlines. */ abstract contract Validator is BlockTimestamp { /** * @dev Custom error to be thrown when a transaction is submitted after its deadline. */ error TransactionTooOld(); /** * @dev Modifier to check if the current block timestamp is before or equal to the given deadline. * @param deadline The timestamp by which the transaction must be executed. * @notice This modifier will revert the transaction if the current block timestamp is after the deadline. */ modifier checkDeadline(uint256 deadline) { if (_blockTimestamp() > deadline) revert TransactionTooOld(); _; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {OracleFeeds} from "./OracleFeeds.sol"; import {AggregatorV3Interface} from "@chainlink/contracts/src/v0.8/shared/interfaces/AggregatorV3Interface.sol"; /** * @title OracleReader * @dev Contract for reading price data from Chainlink oracles */ contract OracleReader { address public oracleFeeds; uint256[49] private __gap; // @note: address(0) is a special address that represents USD (IRL asset) address public constant USD = address(0); // @note: special address that represents ETH (Chainlink asset) address public constant ETH = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /** * @dev Error thrown when no valid price is found */ error NoPriceFound(); /** * @dev Error thrown when no valid feed is found */ error NoFeedFound(); /** * @dev Error thrown when the price is stale */ error StalePrice(); /** * @dev Error thrown when oracle feeds are aready initialized */ error AlreadyInitialized(); /** * @dev Initializes the contract with the OracleFeeds address * @param _oracleFeeds Address of the OracleFeeds contract */ function __OracleReader_init(address _oracleFeeds) internal { require(oracleFeeds == address(0), AlreadyInitialized()); oracleFeeds = _oracleFeeds; } /** * @dev Retrieves the latest price from the oracle * @return price from the oracle * @dev Reverts if the price data is older than chainlink's heartbeat */ function getOraclePrice(address quote, address base) public view returns(uint256) { bool isInverted = false; address feed = OracleFeeds(oracleFeeds).priceFeeds(quote, base); if (feed == address(0)) { feed = OracleFeeds(oracleFeeds).priceFeeds(base, quote); if (feed == address(0)) { revert NoFeedFound(); } // Invert the price isInverted = true; } (,int256 answer,,uint256 updatedTimestamp,) = AggregatorV3Interface(feed).latestRoundData(); if (updatedTimestamp + OracleFeeds(oracleFeeds).feedHeartbeats(feed) < block.timestamp) { revert StalePrice(); } uint256 decimals = uint256(AggregatorV3Interface(feed).decimals()); return isInverted ? (10 ** decimals * 10 ** decimals) / uint256(answer) : uint256(answer); } /** * @dev Retrieves the number of decimals used in the oracle's price data * @return decimals Number of decimals used in the price data */ function getOracleDecimals(address quote, address base) public view returns(uint8 decimals) { address feed = OracleFeeds(oracleFeeds).priceFeeds(quote, base); if (feed == address(0)) { feed = OracleFeeds(oracleFeeds).priceFeeds(base, quote); if (feed == address(0)) { revert NoFeedFound(); } } return AggregatorV3Interface(feed).decimals(); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {PoolFactory} from "./PoolFactory.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import {AccessControlUpgradeable} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import {ERC20PermitUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol"; /** * @title LeverageToken * @dev This contract implements a leverage token with upgradeable capabilities, access control, and pausability. */ contract LeverageToken is Initializable, ERC20Upgradeable, AccessControlUpgradeable, ERC20PermitUpgradeable, UUPSUpgradeable, PausableUpgradeable { /// @dev Role identifier for accounts with minting privileges bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE"); /// @dev Role identifier for accounts with governance privileges bytes32 public constant GOV_ROLE = keccak256("GOV_ROLE"); /// @dev The pool factory PoolFactory public poolFactory; /// @dev Error thrown when the caller is not the security council error CallerIsNotSecurityCouncil(); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the contract with a name, symbol, minter, and governance address. * @param name The name of the token * @param symbol The symbol of the token * @param minter The address that will have minting privileges * @param governance The address that will have governance privileges */ function initialize( string memory name, string memory symbol, address minter, address governance, address _poolFactory ) initializer public { __ERC20_init(name, symbol); __ERC20Permit_init(name); __UUPSUpgradeable_init(); __Pausable_init(); poolFactory = PoolFactory(_poolFactory); _grantRole(MINTER_ROLE, minter); _grantRole(GOV_ROLE, governance); _setRoleAdmin(GOV_ROLE, GOV_ROLE); _setRoleAdmin(MINTER_ROLE, MINTER_ROLE); } /** * @dev Mints new tokens to the specified address. * @param to The address that will receive the minted tokens * @param amount The amount of tokens to mint * @notice Can only be called by addresses with the MINTER_ROLE. */ function mint(address to, uint256 amount) public onlyRole(MINTER_ROLE) { _mint(to, amount); } /** * @dev Burns tokens from the specified account. * @param account The account from which tokens will be burned * @param amount The amount of tokens to burn * @notice Can only be called by addresses with the MINTER_ROLE. */ function burn(address account, uint256 amount) public onlyRole(MINTER_ROLE) { _burn(account, amount); } /** * @dev Internal function to update user assets after a transfer. * @param from The address tokens are transferred from * @param to The address tokens are transferred to * @param amount The amount of tokens transferred * @notice This function is called during token transfer and is paused when the contract is paused. */ function _update(address from, address to, uint256 amount) internal virtual override whenNotPaused() { super._update(from, to, amount); } /** * @dev Pauses all token transfers, mints, burns, and indexing updates. * @notice Can only be called by addresses with the SECURITY_COUNCIL_ROLE. Does not prevent contract upgrades. */ function pause() external onlySecurityCouncil { _pause(); } /** * @dev Unpauses all token transfers, mints, burns, and indexing updates. * @notice Can only be called by addresses with the SECURITY_COUNCIL_ROLE. */ function unpause() external onlySecurityCouncil { _unpause(); } modifier onlySecurityCouncil() { if (!poolFactory.hasRole(poolFactory.SECURITY_COUNCIL_ROLE(), msg.sender)) { revert CallerIsNotSecurityCouncil(); } _; } /** * @dev Internal function to authorize an upgrade to a new implementation. * @param newImplementation The address of the new implementation * @notice Can only be called by the owner of the contract. */ function _authorizeUpgrade(address newImplementation) internal onlyRole(GOV_ROLE) override {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; // Interface that includes the decimals method interface ExtendedIERC20 is IERC20 { function decimals() external view returns (uint8); function symbol() external view returns (string memory); } // Library to extend the functionality of IERC20 library ERC20Extensions { function safeDecimals(IERC20 token) internal view returns (uint8) { // Try casting the token to the extended interface with decimals() try ExtendedIERC20(address(token)).decimals() returns (uint8 tokenDecimals) { return tokenDecimals; } catch { // Return a default value if decimals() is not implemented return 18; } } function safeSymbol(IERC20 token) internal view returns (string memory) { // Try casting the token to the extended interface with symbol() try ExtendedIERC20(address(token)).symbol() returns (string memory tokenSymbol) { return tokenSymbol; } catch { // Return a default value if symbol() is not implemented return ""; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Pausable struct PausableStorage { bool _paused; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300; function _getPausableStorage() private pure returns (PausableStorage storage $) { assembly { $.slot := PausableStorageLocation } } /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { PausableStorage storage $ = _getPausableStorage(); $._paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { PausableStorage storage $ = _getPausableStorage(); return $._paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard struct ReentrancyGuardStorage { uint256 _status; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00; function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) { assembly { $.slot := ReentrancyGuardStorageLocation } } /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); $._status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); // On the first call to nonReentrant, _status will be NOT_ENTERED if ($._status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail $._status = ENTERED; } function _nonReentrantAfter() private { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) $._status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage(); return $._status == ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; import {console as console2} from "./console.sol";
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {Decimals} from "./lib/Decimals.sol"; import {OracleReader} from "./OracleReader.sol"; import {FixedPoint} from "./lib/balancer/FixedPoint.sol"; import {VaultReentrancyLib} from "./lib/balancer/VaultReentrancyLib.sol"; import {IVault} from "@balancer/contracts/interfaces/contracts/vault/IVault.sol"; import {IBalancerV2ManagedPool} from "./lib/balancer/IBalancerV2ManagedPool.sol"; import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import {IERC20} from "@balancer/contracts/interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol"; import {AggregatorV3Interface} from "@chainlink/contracts/src/v0.8/shared/interfaces/AggregatorV3Interface.sol"; import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol"; contract BalancerOracleAdapter is Initializable, OwnableUpgradeable, UUPSUpgradeable, PausableUpgradeable, ReentrancyGuardUpgradeable, AggregatorV3Interface, OracleReader { using Decimals for uint256; using FixedPoint for uint256; address public poolAddress; uint8 public decimals; error NotImplemented(); error PriceTooLargeForIntConversion(); error ZeroInvariant(); /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @dev Initializes the BalancerOracleAdapter. * This function is called once during deployment or upgrading to initialize state variables. * @param _poolAddress Address of the BALANCER Pool used for the oracle. * @param _decimals Number of decimals returned by the oracle. * @param _oracleFeeds Address of the OracleReader feeds contract, containing the Chainlink price feeds for each asset in the pool. */ function initialize( address _poolAddress, uint8 _decimals, address _oracleFeeds, address _owner ) initializer external { __Ownable_init(_owner); __OracleReader_init(_oracleFeeds); __ReentrancyGuard_init(); __Pausable_init(); poolAddress = _poolAddress; decimals = _decimals; } /** * @dev Returns the number of decimals used by the oracle. * @return uint8 The number of decimals. */ // function decimals() external view returns (uint8){ // return DECIMALS; // } /** * @dev Returns the description of the oracle. * @return string The description. */ function description() external pure returns (string memory){ return "Balancer Pool Chainlink Adapter"; } /** * @dev Returns the version of the oracle. * @return uint256 The version. */ function version() external pure returns (uint256){ return 1; } /** * @dev Not implemented. */ function getRoundData( uint80 /*_roundId*/ ) public pure returns (uint80, int256, uint256, uint256, uint80) { revert NotImplemented(); } /** * @dev Returns the latest round data. Calls getRoundData with round ID 0. * @return roundId The round ID. Always 0 for this oracle. * @return answer The price. * @return startedAt The timestamp of the round. * @return updatedAt The timestamp of the round. * @return answeredInRound The round ID. Always 0 for this oracle. */ function latestRoundData() external view returns (uint80, int256, uint256, uint256, uint80) { IBalancerV2ManagedPool pool = IBalancerV2ManagedPool(poolAddress); VaultReentrancyLib.ensureNotInVaultContext(IVault(pool.getVault())); (IERC20[] memory tokens, uint256[] memory balances,) = IVault(pool.getVault()).getPoolTokens(pool.getPoolId()); uint256[] memory scalingFactors = pool.getScalingFactors(); //get weights uint256[] memory weights = pool.getNormalizedWeights(); // 18 dec fractions uint256[] memory prices = new uint256[](tokens.length-1); uint8 oracleDecimals; for(uint8 i = 1; i < tokens.length; i++) { oracleDecimals = getOracleDecimals(address(tokens[i]), ETH); prices[i-1] = getOraclePrice(address(tokens[i]), ETH).normalizeAmount(oracleDecimals, decimals); } // Scale up balances for invariant calculation balances = _removeFirstElement(balances); for (uint256 i = 0; i < balances.length; i++) { balances[i] = FixedPoint.mulDown(balances[i], scalingFactors[i]); } // Calculate invariant using WeightedMath uint256 invariant = _calculateInvariant(weights, balances); uint256 fairUintETHPrice = _calculateFairUintPrice(prices, weights, invariant, pool.getActualSupply()); uint256 ethPrice = getOraclePrice(ETH, USD); uint256 fairUintUSDPrice = fairUintETHPrice * ethPrice / 10**getOracleDecimals(ETH, USD); if (fairUintUSDPrice > uint256(type(int256).max)) { revert PriceTooLargeForIntConversion(); } return (uint80(0), int256(fairUintUSDPrice), block.timestamp, block.timestamp, uint80(0)); } function getSingleAssetPrice(address quote, address base) public view returns(uint256) { return super.getOraclePrice(quote, base); } /** * @dev Calculates the fair price of the pool in USD using the Balancer invariant formula: https://docs.balancer.fi/concepts/advanced/valuing-bpt/valuing-bpt.html#on-chain-price-evaluation. * @param prices Array of prices of the assets in the pool. * @param weights Array of weights of the assets in the pool. * @param invariant The invariant of the pool. * @param totalBPTSupply The total supply of BPT in the pool. * @return uint256 The fair price of the pool in USD. */ function _calculateFairUintPrice( uint256[] memory prices, uint256[] memory weights, uint256 invariant, uint256 totalBPTSupply ) internal pure returns (uint256) { uint256 priceWeightPower = FixedPoint.ONE; for(uint8 i = 0; i < prices.length; i ++) { priceWeightPower = priceWeightPower.mulDown(prices[i].divDown(weights[i]).powDown(weights[i])); } return invariant.mulDown(priceWeightPower).divDown(totalBPTSupply); } function _calculateInvariant( uint256[] memory normalizedWeights, uint256[] memory balances ) internal pure returns (uint256 invariant) { invariant = FixedPoint.ONE; for (uint256 i = 0; i < normalizedWeights.length; i++) { invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i])); } if (invariant == 0) revert ZeroInvariant(); return invariant; } function _removeFirstElement(uint256[] memory arr) public pure returns (uint256[] memory) { uint256[] memory newArr = new uint256[](arr.length - 1); for (uint256 i = 1; i < arr.length; i++) { newArr[i - 1] = arr[i]; } return newArr; } function setBalancerPoolAddress(address _balancerPoolAddress) external onlyOwner { poolAddress = _balancerPoolAddress; } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * @param newImplementation Address of the new implementation contract */ function _authorizeUpgrade(address newImplementation) internal onlyOwner override {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IAsset} from "@balancer/contracts/interfaces/contracts/vault/IAsset.sol"; struct ManagedPoolParams { string name; string symbol; address[] assetManagers; } struct ManagedPoolSettingsParams { IAsset[] tokens; uint256[] normalizedWeights; uint256 swapFeePercentage; bool swapEnabledOnStart; bool mustAllowlistLPs; uint256 managementAumFeePercentage; uint256 aumFeeId; } interface IManagedPoolFactory { function create(ManagedPoolParams memory params, ManagedPoolSettingsParams memory settingsParams, address owner, bytes32 salt) external returns (address pool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IManagedPool { function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol"; import {Initializable} from "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Ownable struct OwnableStorage { address _owner; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300; function _getOwnableStorage() private pure returns (OwnableStorage storage $) { assembly { $.slot := OwnableStorageLocation } } /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ function __Ownable_init(address initialOwner) internal onlyInitializing { __Ownable_init_unchained(initialOwner); } function __Ownable_init_unchained(address initialOwner) internal onlyInitializing { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { OwnableStorage storage $ = _getOwnableStorage(); return $._owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { OwnableStorage storage $ = _getOwnableStorage(); address oldOwner = $._owner; $._owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "../solidity-utils/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors { /// @custom:storage-location erc7201:openzeppelin.storage.ERC20 struct ERC20Storage { mapping(address account => uint256) _balances; mapping(address account => mapping(address spender => uint256)) _allowances; uint256 _totalSupply; string _name; string _symbol; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00; function _getERC20Storage() private pure returns (ERC20Storage storage $) { assembly { $.slot := ERC20StorageLocation } } /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { ERC20Storage storage $ = _getERC20Storage(); $._name = name_; $._symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows $._totalSupply += value; } else { uint256 fromBalance = $._balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. $._balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. $._totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. $._balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } $._allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) pragma solidity ^0.8.20; import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol"; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl struct AccessControlStorage { mapping(bytes32 role => RoleData) _roles; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800; function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) { assembly { $.slot := AccessControlStorageLocation } } /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { AccessControlStorage storage $ = _getAccessControlStorage(); bytes32 previousAdminRole = getRoleAdmin(role); $._roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (!hasRole(role, account)) { $._roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (hasRole(role, account)) { $._roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol"; import {ERC20Upgradeable} from "../ERC20Upgradeable.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol"; import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol"; import {Initializable} from "../../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ function __ERC20Permit_init(string memory name) internal onlyInitializing { __EIP712_init_unchained(name, "1"); } function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) pragma solidity ^0.8.20; import {IAccessControl} from "./IAccessControl.sol"; import {Context} from "../utils/Context.sol"; import {ERC165} from "../utils/introspection/ERC165.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControl is Context, IAccessControl, ERC165 { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } mapping(bytes32 role => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { return _roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { if (!hasRole(role, account)) { _roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { if (hasRole(role, account)) { _roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } }
//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.0; /** @title A library for deploying contracts EIP-3171 style. @author Agustin Aguilar <[email protected]> */ library Create3 { error ErrorCreatingProxy(); error ErrorCreatingContract(); error TargetAlreadyExists(); /** @notice The bytecode for a contract that proxies the creation of another contract @dev If this code is deployed using CREATE2 it can be used to decouple `creationCode` from the child contract address 0x67363d3d37363d34f03d5260086018f3: 0x00 0x67 0x67XXXXXXXXXXXXXXXX PUSH8 bytecode 0x363d3d37363d34f0 0x01 0x3d 0x3d RETURNDATASIZE 0 0x363d3d37363d34f0 0x02 0x52 0x52 MSTORE 0x03 0x60 0x6008 PUSH1 08 8 0x04 0x60 0x6018 PUSH1 18 24 8 0x05 0xf3 0xf3 RETURN 0x363d3d37363d34f0: 0x00 0x36 0x36 CALLDATASIZE cds 0x01 0x3d 0x3d RETURNDATASIZE 0 cds 0x02 0x3d 0x3d RETURNDATASIZE 0 0 cds 0x03 0x37 0x37 CALLDATACOPY 0x04 0x36 0x36 CALLDATASIZE cds 0x05 0x3d 0x3d RETURNDATASIZE 0 cds 0x06 0x34 0x34 CALLVALUE val 0 cds 0x07 0xf0 0xf0 CREATE addr */ bytes internal constant PROXY_CHILD_BYTECODE = hex"67_36_3d_3d_37_36_3d_34_f0_3d_52_60_08_60_18_f3"; // KECCAK256_PROXY_CHILD_BYTECODE = keccak256(PROXY_CHILD_BYTECODE); bytes32 internal constant KECCAK256_PROXY_CHILD_BYTECODE = 0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f; /** @notice Returns the size of the code on a given address @param _addr Address that may or may not contain code @return size of the code on the given `_addr` */ function codeSize(address _addr) internal view returns (uint256 size) { assembly { size := extcodesize(_addr) } } /** @notice Creates a new contract with given `_creationCode` and `_salt` @param _salt Salt of the contract creation, resulting address will be derivated from this value only @param _creationCode Creation code (constructor) of the contract to be deployed, this value doesn't affect the resulting address @return addr of the deployed contract, reverts on error */ function create3(bytes32 _salt, bytes memory _creationCode) internal returns (address addr) { return create3(_salt, _creationCode, 0); } /** @notice Creates a new contract with given `_creationCode` and `_salt` @param _salt Salt of the contract creation, resulting address will be derivated from this value only @param _creationCode Creation code (constructor) of the contract to be deployed, this value doesn't affect the resulting address @param _value In WEI of ETH to be forwarded to child contract @return addr of the deployed contract, reverts on error */ function create3(bytes32 _salt, bytes memory _creationCode, uint256 _value) internal returns (address addr) { // Creation code bytes memory creationCode = PROXY_CHILD_BYTECODE; // Get target final address addr = addressOf(_salt); if (codeSize(addr) != 0) revert TargetAlreadyExists(); // Create CREATE2 proxy address proxy; assembly { proxy := create2(0, add(creationCode, 32), mload(creationCode), _salt)} if (proxy == address(0)) revert ErrorCreatingProxy(); // Call proxy with final init code (bool success,) = proxy.call{ value: _value }(_creationCode); if (!success || codeSize(addr) == 0) revert ErrorCreatingContract(); } /** @notice Computes the resulting address of a contract deployed using address(this) and the given `_salt` @param _salt Salt of the contract creation, resulting address will be derivated from this value only @return addr of the deployed contract, reverts on error @dev The address creation formula is: keccak256(rlp([keccak256(0xff ++ address(this) ++ _salt ++ keccak256(childBytecode))[12:], 0x01])) */ function addressOf(bytes32 _salt) internal view returns (address) { address proxy = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', address(this), _salt, KECCAK256_PROXY_CHILD_BYTECODE ) ) ) ) ); return address( uint160( uint256( keccak256( abi.encodePacked( hex"d6_94", proxy, hex"01" ) ) ) ) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol) pragma solidity ^0.8.20; import {IBeacon} from "./IBeacon.sol"; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; /** * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}. * * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally. * * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust * the beacon to not upgrade the implementation maliciously. * * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in * an inconsistent state where the beacon storage slot does not match the beacon address. */ contract BeaconProxy is Proxy { // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call. address private immutable _beacon; /** * @dev Initializes the proxy with `beacon`. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity * constructor. * * Requirements: * * - `beacon` must be a contract with the interface {IBeacon}. * - If `data` is empty, `msg.value` must be zero. */ constructor(address beacon, bytes memory data) payable { ERC1967Utils.upgradeBeaconToAndCall(beacon, data); _beacon = beacon; } /** * @dev Returns the current implementation address of the associated beacon. */ function _implementation() internal view virtual override returns (address) { return IBeacon(_getBeacon()).implementation(); } /** * @dev Returns the beacon. */ function _getBeacon() internal view virtual returns (address) { return _beacon; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; /** * @title Utils * @dev Library containing utility functions for contract deployment */ library Utils { /** * @dev Deploys a new upgradeable proxy contract * @param implementation The address of the implementation contract * @param initialize The initialization data for the proxy contract * @return address The address of the newly deployed proxy contract */ function deploy(address implementation, bytes memory initialize) internal returns (address) { ERC1967Proxy proxy = new ERC1967Proxy( implementation, initialize ); return address(proxy); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; /** * @title BlockTimestamp * @dev Abstract contract providing a function to get the current block timestamp. */ abstract contract BlockTimestamp { /** * @notice Returns the current block timestamp * @return uint256 The current block timestamp */ function _blockTimestamp() internal view virtual returns (uint256) { return block.timestamp; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // solhint-disable-next-line interface-starts-with-i interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function getRoundData( uint80 _roundId ) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; library console { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _castLogPayloadViewToPure( function(bytes memory) internal view fnIn ) internal pure returns (function(bytes memory) internal pure fnOut) { assembly { fnOut := fnIn } } function _sendLogPayload(bytes memory payload) internal pure { _castLogPayloadViewToPure(_sendLogPayloadView)(payload); } function _sendLogPayloadView(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal pure { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int)", p0)); } function logUint(uint p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function logString(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function log(int p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int)", p0)); } function log(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint p0, uint p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1)); } function log(uint p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1)); } function log(uint p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1)); } function log(uint p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1)); } function log(string memory p0, uint p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1)); } function log(string memory p0, int p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,int)", p0, p1)); } function log(string memory p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1)); } function log(bool p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1)); } function log(address p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint p0, uint p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2)); } function log(uint p0, uint p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2)); } function log(uint p0, uint p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2)); } function log(uint p0, uint p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2)); } function log(uint p0, string memory p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2)); } function log(uint p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2)); } function log(uint p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2)); } function log(uint p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2)); } function log(uint p0, bool p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2)); } function log(uint p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2)); } function log(uint p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2)); } function log(uint p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2)); } function log(uint p0, address p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2)); } function log(uint p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2)); } function log(uint p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2)); } function log(uint p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2)); } function log(string memory p0, uint p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2)); } function log(string memory p0, uint p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2)); } function log(string memory p0, uint p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2)); } function log(string memory p0, uint p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2)); } function log(bool p0, uint p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2)); } function log(bool p0, uint p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2)); } function log(bool p0, uint p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2)); } function log(address p0, uint p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2)); } function log(address p0, uint p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2)); } function log(address p0, uint p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint p0, uint p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { LogExpMath } from "./LogExpMath.sol"; /// @notice Support 18-decimal fixed point arithmetic. All Vault calculations use this for high and uniform precision. library FixedPoint { /// @notice Attempted division by zero. error ZeroDivision(); // solhint-disable no-inline-assembly // solhint-disable private-vars-leading-underscore uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant TWO = 2 * ONE; uint256 internal constant FOUR = 4 * ONE; uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { // Multiplication overflow protection is provided by Solidity 0.8.x uint256 product = a * b; return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256 result) { // Multiplication overflow protection is provided by Solidity 0.8.x uint256 product = a * b; // Equivalent to: // result = product == 0 ? 0 : ((product - 1) / FixedPoint.ONE) + 1; assembly ("memory-safe") { result := mul(iszero(iszero(product)), add(div(sub(product, 1), ONE), 1)) } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity 0.8 reverts with a Panic code (0x11) if the multiplication overflows. uint256 aInflated = a * ONE; // Solidity 0.8 reverts with a "Division by Zero" Panic code (0x12) if b is zero return aInflated / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) { return mulDivUp(a, ONE, b); } /// @dev Return (a * b) / c, rounding up. function mulDivUp(uint256 a, uint256 b, uint256 c) internal pure returns (uint256 result) { // This check is required because Yul's `div` doesn't revert on c==0 if (c == 0) { revert ZeroDivision(); } // Multiple overflow protection is done by Solidity 0.8x uint256 product = a * b; // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, if x == 0 then the result is zero // // Equivalent to: // result = a == 0 ? 0 : (a * b - 1) / c + 1; assembly ("memory-safe") { result := mul(iszero(iszero(product)), add(div(sub(product, 1), c), 1)) } } /** * @dev Version of divUp when the input is raw (i.e., already "inflated"). For instance, * invariant * invariant (36 decimals) vs. invariant.mulDown(invariant) (18 decimal FP). * This can occur in calculations with many successive multiplications and divisions, and * we want to minimize the number of operations by avoiding unnecessary scaling by ONE. */ function divUpRaw(uint256 a, uint256 b) internal pure returns (uint256 result) { // This check is required because Yul's `div` doesn't revert on b==0 if (b == 0) { revert ZeroDivision(); } // Equivalent to: // result = a == 0 ? 0 : 1 + (a - 1) / b; assembly ("memory-safe") { result := mul(iszero(iszero(a)), add(1, div(sub(a, 1), b))) } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulDown(x, x); } else if (y == FOUR) { uint256 square = mulDown(x, x); return mulDown(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = mulUp(raw, MAX_POW_RELATIVE_ERROR) + 1; if (raw < maxError) { return 0; } else { unchecked { return raw - maxError; } } } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulUp(x, x); } else if (y == FOUR) { uint256 square = mulUp(x, x); return mulUp(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = mulUp(raw, MAX_POW_RELATIVE_ERROR) + 1; return raw + maxError; } } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256 result) { // Equivalent to: // result = (x < ONE) ? (ONE - x) : 0; assembly ("memory-safe") { result := mul(lt(x, ONE), sub(ONE, x)) } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; import {IVault} from "@balancer/contracts/interfaces/contracts/vault/IVault.sol"; import "@balancer/contracts/interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; library VaultReentrancyLib { /** * @dev Ensure we are not in a Vault context when this function is called, by attempting a no-op internal * balance operation. If we are already in a Vault transaction (e.g., a swap, join, or exit), the Vault's * reentrancy protection will cause this function to revert. * * The exact function call doesn't really matter: we're just trying to trigger the Vault reentrancy check * (and not hurt anything in case it works). An empty operation array with no specific operation at all works * for that purpose, and is also the least expensive in terms of gas and bytecode size. * * Call this at the top of any function that can cause a state change in a pool and is either public itself, * or called by a public function *outside* a Vault operation (e.g., join, exit, or swap). * * If this is *not* called in functions that are vulnerable to the read-only reentrancy issue described * here (https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345), those functions are unsafe, * and subject to manipulation that may result in loss of funds. */ function ensureNotInVaultContext(IVault vault) internal view { // Perform the following operation to trigger the Vault's reentrancy guard: // // IVault.UserBalanceOp[] memory noop = new IVault.UserBalanceOp[](0); // _vault.manageUserBalance(noop); // // However, use a static call so that it can be a view function (even though the function is non-view). // This allows the library to be used more widely, as some functions that need to be protected might be // view. // // This staticcall always reverts, but we need to make sure it doesn't fail due to a re-entrancy attack. // Staticcalls consume all gas forwarded to them on a revert caused by storage modification. // By default, almost the entire available gas is forwarded to the staticcall, // causing the entire call to revert with an 'out of gas' error. // // We set the gas limit to 10k for the staticcall to // avoid wasting gas when it reverts due to storage modification. // `manageUserBalance` is a non-reentrant function in the Vault, so calling it invokes `_enterNonReentrant` // in the `ReentrancyGuard` contract, reproduced here: // // function _enterNonReentrant() private { // // If the Vault is actually being reentered, it will revert in the first line, at the `_require` that // // checks the reentrancy flag, with "BAL#400" (corresponding to Errors.REENTRANCY) in the revertData. // // The full revertData will be: `abi.encodeWithSignature("Error(string)", "BAL#400")`. // _require(_status != _ENTERED, Errors.REENTRANCY); // // // If the Vault is not being reentered, the check above will pass: but it will *still* revert, // // because the next line attempts to modify storage during a staticcall. However, this type of // // failure results in empty revertData. // _status = _ENTERED; // } // // So based on this analysis, there are only two possible revertData values: empty, or abi.encoded BAL#400. // // It is of course much more bytecode and gas efficient to check for zero-length revertData than to compare it // to the encoded REENTRANCY revertData. // // While it should be impossible for the call to fail in any other way (especially since it reverts before // `manageUserBalance` even gets called), any other error would generate non-zero revertData, so checking for // empty data guards against this case too. (, bytes memory revertData) = address(vault).staticcall{ gas: 10_000 }( abi.encodeWithSelector(vault.manageUserBalance.selector, 0) ); _require(revertData.length == 0, Errors.REENTRANCY); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.26; interface IBalancerV2ManagedPool { function getVault() external view returns (address); function getScalingFactors() external view returns (uint256[] memory); function getNormalizedWeights() external view returns (uint256[] memory); function getPoolId() external view returns (bytes32); function totalSupply() external view returns (uint256); function getActualSupply() external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol) pragma solidity ^0.8.20; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165Upgradeable is Initializable, IERC165 { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. */ abstract contract EIP712Upgradeable is Initializable, IERC5267 { bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /// @custom:storage-location erc7201:openzeppelin.storage.EIP712 struct EIP712Storage { /// @custom:oz-renamed-from _HASHED_NAME bytes32 _hashedName; /// @custom:oz-renamed-from _HASHED_VERSION bytes32 _hashedVersion; string _name; string _version; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100; function _getEIP712Storage() private pure returns (EIP712Storage storage $) { assembly { $.slot := EIP712StorageLocation } } /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal onlyInitializing { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing { EIP712Storage storage $ = _getEIP712Storage(); $._name = name; $._version = version; // Reset prior values in storage if upgrading $._hashedName = 0; $._hashedVersion = 0; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(); } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { EIP712Storage storage $ = _getEIP712Storage(); // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized // and the EIP712 domain is not reliable, as it will be missing name and version. require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized"); return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Name() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._name; } /** * @dev The version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Version() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._version; } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead. */ function _EIP712NameHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory name = _EIP712Name(); if (bytes(name).length > 0) { return keccak256(bytes(name)); } else { // If the name is empty, the contract may have been upgraded without initializing the new storage. // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design. bytes32 hashedName = $._hashedName; if (hashedName != 0) { return hashedName; } else { return keccak256(""); } } } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead. */ function _EIP712VersionHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory version = _EIP712Version(); if (bytes(version).length > 0) { return keccak256(bytes(version)); } else { // If the version is empty, the contract may have been upgraded without initializing the new storage. // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design. bytes32 hashedVersion = $._hashedVersion; if (hashedVersion != 0) { return hashedVersion; } else { return keccak256(""); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract NoncesUpgradeable is Initializable { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); /// @custom:storage-location erc7201:openzeppelin.storage.Nonces struct NoncesStorage { mapping(address account => uint256) _nonces; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00; function _getNoncesStorage() private pure returns (NoncesStorage storage $) { assembly { $.slot := NoncesStorageLocation } } function __Nonces_init() internal onlyInitializing { } function __Nonces_init_unchained() internal onlyInitializing { } /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); return $._nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return $._nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol) pragma solidity ^0.8.20; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback * function and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.20; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "./ERC1967Utils.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`. * * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ constructor(address implementation, bytes memory _data) payable { ERC1967Utils.upgradeToAndCall(implementation, _data); } /** * @dev Returns the current implementation address. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function _implementation() internal view virtual override returns (address) { return ERC1967Utils.getImplementation(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; // solhint-disable /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * All math operations are unchecked in order to save gas. * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { /// @notice This error is thrown when a base is not within an acceptable range. error BaseOutOfBounds(); /// @notice This error is thrown when a exponent is not within an acceptable range. error ExponentOutOfBounds(); /// @notice This error is thrown when the exponent * ln(base) is not within an acceptable range. error ProductOutOfBounds(); /// @notice This error is thrown when an exponent used in the exp function is not within an acceptable range. error InvalidExponent(); /// @notice This error is thrown when a variable or result is not within the acceptable bounds defined in the function. error OutOfBounds(); // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. if (x >> 255 != 0) { revert BaseOutOfBounds(); } int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. if (y >= MILD_EXPONENT_BOUND) { revert ExponentOutOfBounds(); } int256 y_int256 = int256(y); int256 logx_times_y; unchecked { if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; } // Finally, we compute exp(y * ln(x)) to arrive at x^y if (!(MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT)) { revert ProductOutOfBounds(); } return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { if (!(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT)) { revert InvalidExponent(); } // We avoid using recursion here because zkSync doesn't support it. bool negativeExponent = false; if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). In the negative // exponent case, compute e^x, then return 1 / result. unchecked { x = -x; } negativeExponent = true; } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; unchecked { if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; } // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; unchecked { if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; unchecked { seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. int256 result = (((product * seriesSum) / ONE_20) * firstAN) / 100; // We avoid using recursion here because zkSync doesn't support it. return negativeExponent ? (ONE_18 * ONE_18) / result : result; } } /// @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; unchecked { if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } } int256 logArg; unchecked { if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } } /// @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. if (a <= 0) { revert OutOfBounds(); } if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { unchecked { return _ln_36(a) / ONE_18; } } else { return _ln(a); } } /// @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. function _ln(int256 a) private pure returns (int256) { // We avoid using recursion here because zkSync doesn't support it. bool negativeExponent = false; if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, so in this case we compute ln(1/a) and negate the final result. unchecked { a = (ONE_18 * ONE_18) / a; } negativeExponent = true; } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; unchecked { if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. unchecked { int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. int256 result = (sum + seriesSum) / 100; // We avoid using recursion here because zkSync doesn't support it. return negativeExponent ? -result : result; } } /** * @dev Internal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. unchecked { x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.1 <0.9.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. * Uses the default 'BAL' prefix for the error code */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require( bool condition, uint256 errorCode, bytes3 prefix ) pure { if (!condition) _revert(errorCode, prefix); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. * Uses the default 'BAL' prefix for the error code */ function _revert(uint256 errorCode) pure { _revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL" } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode, bytes3 prefix) pure { uint256 prefixUint = uint256(uint24(prefix)); // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. // We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#') // Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint))) let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; uint256 internal constant INSUFFICIENT_DATA = 105; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; uint256 internal constant DISABLED = 211; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343; uint256 internal constant FEATURE_DISABLED = 344; uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345; uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346; uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347; uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348; uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349; uint256 internal constant MAX_WEIGHT = 350; uint256 internal constant UNAUTHORIZED_JOIN = 351; uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352; uint256 internal constant FRACTIONAL_TARGET = 353; uint256 internal constant ADD_OR_REMOVE_BPT = 354; uint256 internal constant INVALID_CIRCUIT_BREAKER_BOUNDS = 355; uint256 internal constant CIRCUIT_BREAKER_TRIPPED = 356; uint256 internal constant MALICIOUS_QUERY_REVERT = 357; uint256 internal constant JOINS_EXITS_DISABLED = 358; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; uint256 internal constant NOT_PAUSED = 431; uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432; uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433; uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434; uint256 internal constant INVALID_OPERATION = 435; uint256 internal constant CODEC_OVERFLOW = 436; uint256 internal constant IN_RECOVERY_MODE = 437; uint256 internal constant NOT_IN_RECOVERY_MODE = 438; uint256 internal constant INDUCED_FAILURE = 439; uint256 internal constant EXPIRED_SIGNATURE = 440; uint256 internal constant MALFORMED_SIGNATURE = 441; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442; uint256 internal constant UNHANDLED_FEE_TYPE = 443; uint256 internal constant BURN_FROM_ZERO = 444; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603; // FeeSplitter uint256 internal constant SPLITTER_FEE_PERCENTAGE_TOO_HIGH = 700; // Misc uint256 internal constant UNIMPLEMENTED = 998; uint256 internal constant SHOULD_NOT_HAPPEN = 999; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@uniswap/v3-periphery/=lib/v3-periphery/", "@uniswap/v3-core/=lib/v3-core/", "@openzeppelin/foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/", "@chainlink/contracts/=lib/chainlink/contracts/", "@create3/contracts/=lib/create3/contracts/", "@balancer/contracts/=lib/balancer-v2-monorepo/pkg/", "@balancer-labs/v2-interfaces/=lib/balancer-v2-monorepo/pkg/interfaces/", "@balancer-labs/v2-pool-utils/=lib/balancer-v2-monorepo/pkg/pool-utils/", "@balancer-labs/v2-solidity-utils/=lib/balancer-v2-monorepo/pkg/solidity-utils/", "balancer-v2-monorepo/=lib/balancer-v2-monorepo/", "chainlink/=lib/chainlink/", "create3/=lib/create3/contracts/", "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/", "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/", "solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/", "v3-core/=lib/v3-core/", "v3-periphery/=lib/v3-periphery/contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_balancerVault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"plazaPool","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"onBehalfOf","type":"address"},{"indexed":false,"internalType":"enum Pool.TokenType","name":"tokenType","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"depositedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"redeemedAmount","type":"uint256"}],"name":"TokensRedeemed","type":"event"},{"inputs":[],"name":"balancerVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"balancerPoolId","type":"bytes32"},{"internalType":"address","name":"_plazaPool","type":"address"},{"internalType":"contract IAsset[]","name":"assets","type":"address[]"},{"internalType":"uint256","name":"plazaTokenAmount","type":"uint256"},{"internalType":"uint256[]","name":"minAmountsOut","type":"uint256[]"},{"internalType":"bytes","name":"userData","type":"bytes"},{"internalType":"enum Pool.TokenType","name":"plazaTokenType","type":"uint8"},{"internalType":"uint256","name":"minbalancerPoolTokenOut","type":"uint256"}],"name":"exitPlazaAndBalancer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"balancerPoolId","type":"bytes32"},{"internalType":"address","name":"_plazaPool","type":"address"},{"internalType":"contract IAsset[]","name":"assets","type":"address[]"},{"internalType":"uint256[]","name":"maxAmountsIn","type":"uint256[]"},{"internalType":"bytes","name":"userData","type":"bytes"},{"internalType":"enum Pool.TokenType","name":"plazaTokenType","type":"uint8"},{"internalType":"uint256","name":"minPlazaTokens","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"joinBalancerAndPlaza","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a034607b57601f61108338819003918201601f19168301916001600160401b03831184841017608057808492602094604052833981010312607b57516001600160a01b03811690819003607b576001600055608052604051610fec908161009782396080518181816102480152818161052e01526109c40152f35b600080fd5b634e487b7160e01b600052604160045260246000fdfe608080604052600436101561001357600080fd5b600090813560e01c908163158274a5146109b05750806361038bbf1461045a57639f4b851b1461004257600080fd5b34610330576101003660031901126103305761005c6109f3565b9060443567ffffffffffffffff81116104565761007d903690600401610a75565b60643560843567ffffffffffffffff811161044e576100a0903690600401610ae3565b9060a4359367ffffffffffffffff8511610330573660238601121561033057846004013567ffffffffffffffff811161045657808601963660248901116104525760c43590600282101561044e576100f6610baf565b6001600160a01b03811690826103cd57604051636147a1c960e11b8152602081600481865afa9081156103c2579087918791610377575b5061014e92906001600160a01b03165b61014983303384610e5b565b610cd8565b60405163f0fae20f60e01b8152946101696004870184610b8c565b80602487015260e435604487015260208660648188865af195861561036c578596610333575b506101a4604051933085526020850190610b8c565b60408301528460608301527f9de4dbfa6bd5132363914fdf4e6027ec4d7ffc10d197d301d4ef0d5293f5a0e660803393a3602011610330575060009485949060606024830135806102f2575050606090829003126102ee576064906040519286602085015260408401520135606082015260608152610224608082610a3b565b905b6040519261023384610a09565b835260208301526040820152606081018290527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316803b156102ea576102b78392918392604051958680948193638bdb391360e01b83526004356004840152306024840152336044840152608060648401526084830190610bfb565b03925af180156102dd576102cd575b6001815580f35b6102d691610a3b565b38816102c6565b50604051903d90823e3d90fd5b5050fd5b8480fd5b90949392506001915014610307575b50610226565b9091506040519060016020830152604082015260408152610329606082610a3b565b9038610301565b80fd5b9095506020813d602011610364575b8161034f60209383610a3b565b8101031261035f5751943861018f565b600080fd5b3d9150610342565b6040513d87823e3d90fd5b9150506020813d6020116103ba575b8161039360209383610a3b565b810103126103b657516001600160a01b03811681036103b657869061014e61012d565b8580fd5b3d9150610386565b6040513d88823e3d90fd5b6040516243b86160e21b8152602081600481865afa9081156103c2579087918791610407575b5061014e92906001600160a01b031661013d565b9150506020813d602011610446575b8161042360209383610a3b565b810103126103b657516001600160a01b03811681036103b657869061014e6103f3565b3d9150610416565b8380fd5b8280fd5b5080fd5b50346103305761010036600319011261033057600435906104796109f3565b9060443567ffffffffffffffff81116104565761049a903690600401610a75565b60643567ffffffffffffffff8111610452576104ba903690600401610ae3565b936084359267ffffffffffffffff841161033057366023850112156103305783600401356104e781610b40565b946104f56040519687610a3b565b818652366024838301011161045257818392602460209301838901378601015260a43560028110156104565761052c959495610baf565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031694825b85518110156105c0576001906105916001600160a01b0361057a838a610bd1565b5116610586838d610bd1565b519030903390610e5b565b6105ba8a896105b3848b6105ab82898060a01b0392610bd1565b511693610bd1565b5191610cd8565b01610559565b509194909295604051976105d389610a09565b8589526020890152604088015284606088015260405163f6c0092760e01b8152866004820152604081602481855afa9081156103c2578691610990575b506040516370a0823160e01b81523060048201526001600160a01b039190911696906020816024818b5afa90811561094f57879161095e575b50823b1561095a578661068a99604051809b819263172b958560e31b8352866004840152306024840152306044840152608060648401526084830190610bfb565b038183875af198891561094f5760249961093b575b50600198505b85518910156107a357602460206001600160a01b036106c48c8a610bd1565b5116604051928380926370a0823160e01b82523060048301525afa908115610798578891610764575b5060249981600192610703575b500198506106a5565b61074b61075e916107598b61071e86888060a01b0392610bd1565b5160405163a9059cbb60e01b60208201523360248201526044810194909452929392169183906064820190565b03601f198101845283610a3b565b610eb7565b386106fa565b905060203d8111610791575b61077a8183610a3b565b6020826000928101031261033057505160246106ed565b503d610770565b6040513d8a823e3d90fd5b6040516370a0823160e01b81523060048201529695506020876024818b5afa9687156103c2578697610907575b5086039586116108f357604090602482518094819363f6c0092760e01b835260048301525afa9081156108e857928483610824886108409660a49660209986916108b8575b506001600160a01b0316610cd8565b60405163f9d2228960e01b815297889586946004860190610b8c565b602484015260c435604484015260e43560648401523360848401526001600160a01b03165af19182156102dd578192610883575b60208360018455604051908152f35b91506020823d6020116108b0575b8161089e60209383610a3b565b8101031261035f579051906001610874565b3d9150610891565b6108da915060403d6040116108e1575b6108d28183610a3b565b810190610b5c565b508c610815565b503d6108c8565b6040513d86823e3d90fd5b634e487b7160e01b85526011600452602485fd5b9096506020813d602011610933575b8161092360209383610a3b565b8101031261035f575195876107d0565b3d9150610916565b8761094891989298610a3b565b953861069f565b6040513d89823e3d90fd5b8680fd5b90506020813d602011610988575b8161097960209383610a3b565b8101031261095a575138610649565b3d915061096c565b6109a9915060403d6040116108e1576108d28183610a3b565b5038610610565b9050346104565781600319360112610456577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b602435906001600160a01b038216820361035f57565b6080810190811067ffffffffffffffff821117610a2557604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff821117610a2557604052565b67ffffffffffffffff8111610a255760051b60200190565b9080601f8301121561035f57813590610a8d82610a5d565b92610a9b6040519485610a3b565b82845260208085019360051b82010191821161035f57602001915b818310610ac35750505090565b82356001600160a01b038116810361035f57815260209283019201610ab6565b9080601f8301121561035f578135610afa81610a5d565b92610b086040519485610a3b565b81845260208085019260051b82010192831161035f57602001905b828210610b305750505090565b8135815260209182019101610b23565b67ffffffffffffffff8111610a2557601f01601f191660200190565b919082604091031261035f5781516001600160a01b038116810361035f57602090920151600381101561035f5790565b906002821015610b995752565b634e487b7160e01b600052602160045260246000fd5b600260005414610bc0576002600055565b633ee5aeb560e01b60005260046000fd5b8051821015610be55760209160051b010190565b634e487b7160e01b600052603260045260246000fd5b91906080810190835191608082528251809152602060a0830193019060005b818110610cb95750505060208401519181810360208301526020808451928381520193019060005b818110610ca357505050604084015190808303604082015281519182845260005b838110610c8e57505060608060209596600087868801015201511515910152601f8019910116010190565b80602080928401015182828801015201610c63565b8251855260209485019490920191600101610c42565b82516001600160a01b0316855260209485019490920191600101610c1a565b604051636eb1769f60e11b81523060048201526001600160a01b038381166024830181905294919390831691602085604481865afa948515610e4f57600095610e1b575b508401809411610e055760405163095ea7b360e01b602082019081526001600160a01b039290921660248201526044808201959095529384526000908190610d65606487610a3b565b85519082855af190610d75610f25565b82610dd3575b5081610dc8575b5015610d8d57505050565b610759610dc6936040519063095ea7b360e01b602083015260248201526000604482015260448152610dc0606482610a3b565b82610eb7565b565b90503b151538610d82565b80519192508115918215610deb575b50509038610d7b565b610dfe9250602080918301019101610e9f565b3880610de2565b634e487b7160e01b600052601160045260246000fd5b90946020823d602011610e47575b81610e3660209383610a3b565b810103126103305750519338610d1c565b3d9150610e29565b6040513d6000823e3d90fd5b6040516323b872dd60e01b60208201526001600160a01b039283166024820152929091166044830152606480830193909352918152610dc691610759608483610a3b565b9081602091031261035f5751801515810361035f5790565b600080610ee09260018060a01b03169360208151910182865af1610ed9610f25565b9083610f55565b8051908115159182610f0a575b5050610ef65750565b635274afe760e01b60005260045260246000fd5b610f1d9250602080918301019101610e9f565b153880610eed565b3d15610f50573d90610f3682610b40565b91610f446040519384610a3b565b82523d6000602084013e565b606090565b90610f7b5750805115610f6a57805190602001fd5b630a12f52160e11b60005260046000fd5b81511580610fad575b610f8c575090565b639996b31560e01b60009081526001600160a01b0391909116600452602490fd5b50803b15610f8456fea2646970667358221220363979fbfcc6f3e09c074158cfc96ab267f46f14453402e09ed72f0cf0d5dd0464736f6c634300081a003300000000000000000000000037287adde7a3d4d05af9cb8811c62e1bade796d0
Deployed Bytecode
0x608080604052600436101561001357600080fd5b600090813560e01c908163158274a5146109b05750806361038bbf1461045a57639f4b851b1461004257600080fd5b34610330576101003660031901126103305761005c6109f3565b9060443567ffffffffffffffff81116104565761007d903690600401610a75565b60643560843567ffffffffffffffff811161044e576100a0903690600401610ae3565b9060a4359367ffffffffffffffff8511610330573660238601121561033057846004013567ffffffffffffffff811161045657808601963660248901116104525760c43590600282101561044e576100f6610baf565b6001600160a01b03811690826103cd57604051636147a1c960e11b8152602081600481865afa9081156103c2579087918791610377575b5061014e92906001600160a01b03165b61014983303384610e5b565b610cd8565b60405163f0fae20f60e01b8152946101696004870184610b8c565b80602487015260e435604487015260208660648188865af195861561036c578596610333575b506101a4604051933085526020850190610b8c565b60408301528460608301527f9de4dbfa6bd5132363914fdf4e6027ec4d7ffc10d197d301d4ef0d5293f5a0e660803393a3602011610330575060009485949060606024830135806102f2575050606090829003126102ee576064906040519286602085015260408401520135606082015260608152610224608082610a3b565b905b6040519261023384610a09565b835260208301526040820152606081018290527f00000000000000000000000037287adde7a3d4d05af9cb8811c62e1bade796d06001600160a01b0316803b156102ea576102b78392918392604051958680948193638bdb391360e01b83526004356004840152306024840152336044840152608060648401526084830190610bfb565b03925af180156102dd576102cd575b6001815580f35b6102d691610a3b565b38816102c6565b50604051903d90823e3d90fd5b5050fd5b8480fd5b90949392506001915014610307575b50610226565b9091506040519060016020830152604082015260408152610329606082610a3b565b9038610301565b80fd5b9095506020813d602011610364575b8161034f60209383610a3b565b8101031261035f5751943861018f565b600080fd5b3d9150610342565b6040513d87823e3d90fd5b9150506020813d6020116103ba575b8161039360209383610a3b565b810103126103b657516001600160a01b03811681036103b657869061014e61012d565b8580fd5b3d9150610386565b6040513d88823e3d90fd5b6040516243b86160e21b8152602081600481865afa9081156103c2579087918791610407575b5061014e92906001600160a01b031661013d565b9150506020813d602011610446575b8161042360209383610a3b565b810103126103b657516001600160a01b03811681036103b657869061014e6103f3565b3d9150610416565b8380fd5b8280fd5b5080fd5b50346103305761010036600319011261033057600435906104796109f3565b9060443567ffffffffffffffff81116104565761049a903690600401610a75565b60643567ffffffffffffffff8111610452576104ba903690600401610ae3565b936084359267ffffffffffffffff841161033057366023850112156103305783600401356104e781610b40565b946104f56040519687610a3b565b818652366024838301011161045257818392602460209301838901378601015260a43560028110156104565761052c959495610baf565b7f00000000000000000000000037287adde7a3d4d05af9cb8811c62e1bade796d06001600160a01b031694825b85518110156105c0576001906105916001600160a01b0361057a838a610bd1565b5116610586838d610bd1565b519030903390610e5b565b6105ba8a896105b3848b6105ab82898060a01b0392610bd1565b511693610bd1565b5191610cd8565b01610559565b509194909295604051976105d389610a09565b8589526020890152604088015284606088015260405163f6c0092760e01b8152866004820152604081602481855afa9081156103c2578691610990575b506040516370a0823160e01b81523060048201526001600160a01b039190911696906020816024818b5afa90811561094f57879161095e575b50823b1561095a578661068a99604051809b819263172b958560e31b8352866004840152306024840152306044840152608060648401526084830190610bfb565b038183875af198891561094f5760249961093b575b50600198505b85518910156107a357602460206001600160a01b036106c48c8a610bd1565b5116604051928380926370a0823160e01b82523060048301525afa908115610798578891610764575b5060249981600192610703575b500198506106a5565b61074b61075e916107598b61071e86888060a01b0392610bd1565b5160405163a9059cbb60e01b60208201523360248201526044810194909452929392169183906064820190565b03601f198101845283610a3b565b610eb7565b386106fa565b905060203d8111610791575b61077a8183610a3b565b6020826000928101031261033057505160246106ed565b503d610770565b6040513d8a823e3d90fd5b6040516370a0823160e01b81523060048201529695506020876024818b5afa9687156103c2578697610907575b5086039586116108f357604090602482518094819363f6c0092760e01b835260048301525afa9081156108e857928483610824886108409660a49660209986916108b8575b506001600160a01b0316610cd8565b60405163f9d2228960e01b815297889586946004860190610b8c565b602484015260c435604484015260e43560648401523360848401526001600160a01b03165af19182156102dd578192610883575b60208360018455604051908152f35b91506020823d6020116108b0575b8161089e60209383610a3b565b8101031261035f579051906001610874565b3d9150610891565b6108da915060403d6040116108e1575b6108d28183610a3b565b810190610b5c565b508c610815565b503d6108c8565b6040513d86823e3d90fd5b634e487b7160e01b85526011600452602485fd5b9096506020813d602011610933575b8161092360209383610a3b565b8101031261035f575195876107d0565b3d9150610916565b8761094891989298610a3b565b953861069f565b6040513d89823e3d90fd5b8680fd5b90506020813d602011610988575b8161097960209383610a3b565b8101031261095a575138610649565b3d915061096c565b6109a9915060403d6040116108e1576108d28183610a3b565b5038610610565b9050346104565781600319360112610456577f00000000000000000000000037287adde7a3d4d05af9cb8811c62e1bade796d06001600160a01b03168152602090f35b602435906001600160a01b038216820361035f57565b6080810190811067ffffffffffffffff821117610a2557604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff821117610a2557604052565b67ffffffffffffffff8111610a255760051b60200190565b9080601f8301121561035f57813590610a8d82610a5d565b92610a9b6040519485610a3b565b82845260208085019360051b82010191821161035f57602001915b818310610ac35750505090565b82356001600160a01b038116810361035f57815260209283019201610ab6565b9080601f8301121561035f578135610afa81610a5d565b92610b086040519485610a3b565b81845260208085019260051b82010192831161035f57602001905b828210610b305750505090565b8135815260209182019101610b23565b67ffffffffffffffff8111610a2557601f01601f191660200190565b919082604091031261035f5781516001600160a01b038116810361035f57602090920151600381101561035f5790565b906002821015610b995752565b634e487b7160e01b600052602160045260246000fd5b600260005414610bc0576002600055565b633ee5aeb560e01b60005260046000fd5b8051821015610be55760209160051b010190565b634e487b7160e01b600052603260045260246000fd5b91906080810190835191608082528251809152602060a0830193019060005b818110610cb95750505060208401519181810360208301526020808451928381520193019060005b818110610ca357505050604084015190808303604082015281519182845260005b838110610c8e57505060608060209596600087868801015201511515910152601f8019910116010190565b80602080928401015182828801015201610c63565b8251855260209485019490920191600101610c42565b82516001600160a01b0316855260209485019490920191600101610c1a565b604051636eb1769f60e11b81523060048201526001600160a01b038381166024830181905294919390831691602085604481865afa948515610e4f57600095610e1b575b508401809411610e055760405163095ea7b360e01b602082019081526001600160a01b039290921660248201526044808201959095529384526000908190610d65606487610a3b565b85519082855af190610d75610f25565b82610dd3575b5081610dc8575b5015610d8d57505050565b610759610dc6936040519063095ea7b360e01b602083015260248201526000604482015260448152610dc0606482610a3b565b82610eb7565b565b90503b151538610d82565b80519192508115918215610deb575b50509038610d7b565b610dfe9250602080918301019101610e9f565b3880610de2565b634e487b7160e01b600052601160045260246000fd5b90946020823d602011610e47575b81610e3660209383610a3b565b810103126103305750519338610d1c565b3d9150610e29565b6040513d6000823e3d90fd5b6040516323b872dd60e01b60208201526001600160a01b039283166024820152929091166044830152606480830193909352918152610dc691610759608483610a3b565b9081602091031261035f5751801515810361035f5790565b600080610ee09260018060a01b03169360208151910182865af1610ed9610f25565b9083610f55565b8051908115159182610f0a575b5050610ef65750565b635274afe760e01b60005260045260246000fd5b610f1d9250602080918301019101610e9f565b153880610eed565b3d15610f50573d90610f3682610b40565b91610f446040519384610a3b565b82523d6000602084013e565b606090565b90610f7b5750805115610f6a57805190602001fd5b630a12f52160e11b60005260046000fd5b81511580610fad575b610f8c575090565b639996b31560e01b60009081526001600160a01b0391909116600452602490fd5b50803b15610f8456fea2646970667358221220363979fbfcc6f3e09c074158cfc96ab267f46f14453402e09ed72f0cf0d5dd0464736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000037287adde7a3d4d05af9cb8811c62e1bade796d0
-----Decoded View---------------
Arg [0] : _balancerVault (address): 0x37287AddE7a3D4d05af9cB8811c62E1Bade796d0
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000037287adde7a3d4d05af9cb8811c62e1bade796d0
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.